Solutions to $xyz = 1$ and $x+y+z = k$ in algebraic integers of small degree, I
Acta Arithmetica, Tome 162 (2014) no. 4, pp. 381-392
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k\in \mathbb {Z}$ be such that $|\mathcal E_k(\mathbb {Q})| = 3$, where $\mathcal E_k: y^2 = 1 - 2 k x + k^2 x^2 -4 x^3$. We determine all solutions to $xyz = 1$ and $x + y + z = k$ in integers of number fields of degree at most four over $\mathbb {Q}$.
Keywords:
mathbb mathcal mathbb where mathcal determine solutions xyz integers number fields degree mathbb
Affiliations des auteurs :
H. G. Grundman 1 ; L. L. Hall-Seelig 2
@article{10_4064_aa162_4_5,
author = {H. G. Grundman and L. L. Hall-Seelig},
title = {Solutions to $xyz = 1$ and $x+y+z = k$ in algebraic integers of small degree, {I}},
journal = {Acta Arithmetica},
pages = {381--392},
publisher = {mathdoc},
volume = {162},
number = {4},
year = {2014},
doi = {10.4064/aa162-4-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-5/}
}
TY - JOUR AU - H. G. Grundman AU - L. L. Hall-Seelig TI - Solutions to $xyz = 1$ and $x+y+z = k$ in algebraic integers of small degree, I JO - Acta Arithmetica PY - 2014 SP - 381 EP - 392 VL - 162 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-5/ DO - 10.4064/aa162-4-5 LA - en ID - 10_4064_aa162_4_5 ER -
%0 Journal Article %A H. G. Grundman %A L. L. Hall-Seelig %T Solutions to $xyz = 1$ and $x+y+z = k$ in algebraic integers of small degree, I %J Acta Arithmetica %D 2014 %P 381-392 %V 162 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-5/ %R 10.4064/aa162-4-5 %G en %F 10_4064_aa162_4_5
H. G. Grundman; L. L. Hall-Seelig. Solutions to $xyz = 1$ and $x+y+z = k$ in algebraic integers of small degree, I. Acta Arithmetica, Tome 162 (2014) no. 4, pp. 381-392. doi: 10.4064/aa162-4-5
Cité par Sources :