Exceptional sets in Waring's problem: two squares and $s$ biquadrates
Acta Arithmetica, Tome 162 (2014) no. 4, pp. 369-379.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R_s(n)$ denote the number of representations of the positive number $n$ as the sum of two squares and $s$ biquadrates. When $s=3$ or $4$, it is established that the anticipated asymptotic formula for $R_s(n)$ holds for all $n\le X$ with at most $O(X^{(9-2s)/8+\varepsilon })$ exceptions.
DOI : 10.4064/aa162-4-4
Keywords: denote number representations positive number sum squares biquadrates established anticipated asymptotic formula holds varepsilon exceptions

Lilu Zhao 1

1 School of Mathematics Hefei University of Technology Hefei 230009, People's Republic of China
@article{10_4064_aa162_4_4,
     author = {Lilu Zhao},
     title = {Exceptional sets in {Waring's} problem: two squares and $s$ biquadrates},
     journal = {Acta Arithmetica},
     pages = {369--379},
     publisher = {mathdoc},
     volume = {162},
     number = {4},
     year = {2014},
     doi = {10.4064/aa162-4-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-4/}
}
TY  - JOUR
AU  - Lilu Zhao
TI  - Exceptional sets in Waring's problem: two squares and $s$ biquadrates
JO  - Acta Arithmetica
PY  - 2014
SP  - 369
EP  - 379
VL  - 162
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-4/
DO  - 10.4064/aa162-4-4
LA  - en
ID  - 10_4064_aa162_4_4
ER  - 
%0 Journal Article
%A Lilu Zhao
%T Exceptional sets in Waring's problem: two squares and $s$ biquadrates
%J Acta Arithmetica
%D 2014
%P 369-379
%V 162
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-4/
%R 10.4064/aa162-4-4
%G en
%F 10_4064_aa162_4_4
Lilu Zhao. Exceptional sets in Waring's problem: two squares and $s$ biquadrates. Acta Arithmetica, Tome 162 (2014) no. 4, pp. 369-379. doi : 10.4064/aa162-4-4. http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-4/

Cité par Sources :