Exceptional sets in Waring's problem: two squares and $s$ biquadrates
Acta Arithmetica, Tome 162 (2014) no. 4, pp. 369-379
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R_s(n)$ denote the number of representations of the positive number $n$ as the sum of two squares and $s$ biquadrates. When $s=3$ or $4$, it is established that the anticipated asymptotic formula for $R_s(n)$ holds for all $n\le X$ with at most $O(X^{(9-2s)/8+\varepsilon })$ exceptions.
Keywords:
denote number representations positive number sum squares biquadrates established anticipated asymptotic formula holds varepsilon exceptions
Affiliations des auteurs :
Lilu Zhao 1
@article{10_4064_aa162_4_4,
author = {Lilu Zhao},
title = {Exceptional sets in {Waring's} problem: two squares and $s$ biquadrates},
journal = {Acta Arithmetica},
pages = {369--379},
publisher = {mathdoc},
volume = {162},
number = {4},
year = {2014},
doi = {10.4064/aa162-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-4/}
}
Lilu Zhao. Exceptional sets in Waring's problem: two squares and $s$ biquadrates. Acta Arithmetica, Tome 162 (2014) no. 4, pp. 369-379. doi: 10.4064/aa162-4-4
Cité par Sources :