On the range of Carmichael's universal-exponent function
Acta Arithmetica, Tome 162 (2014) no. 3, pp. 289-308.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\lambda $ denote Carmichael's function, so $\lambda (n)$ is the universal exponent for the multiplicative group modulo $n$. It is closely related to Euler's $\varphi $-function, but we show here that the image of $\lambda $ is much denser than the image of $\varphi $. In particular the number of $\lambda $-values to $x$ exceeds $x/(\log x)^{.36}$ for all large $x$, while for $\varphi $ it is equal to $x/(\log x)^{1+o(1)}$, an old result of Erdős. We also improve on an earlier result of the first author and Friedlander giving an upper bound for the distribution of $\lambda $-values.
DOI : 10.4064/aa162-3-6
Keywords: lambda denote carmichaels function lambda universal exponent multiplicative group modulo closely related eulers varphi function here image lambda much denser image varphi particular number lambda values exceeds log large while varphi equal log old result erd improve earlier result first author friedlander giving upper bound distribution lambda values

Florian Luca 1 ; Carl Pomerance 2

1 Mathematical Institute, UNAM Juriquilla Juriquilla, 76230 Santiago de Querétaro Querétaro de Arteaga, México and School of Mathematics University of the Witwatersrand P.O. Box Wits 2050 Johannesburg, South Africa
2 Department of Mathematics Dartmouth College Hanover, NH 03755–3551, U.S.A.
@article{10_4064_aa162_3_6,
     author = {Florian Luca and Carl Pomerance},
     title = {On the range of {Carmichael's} universal-exponent function},
     journal = {Acta Arithmetica},
     pages = {289--308},
     publisher = {mathdoc},
     volume = {162},
     number = {3},
     year = {2014},
     doi = {10.4064/aa162-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-6/}
}
TY  - JOUR
AU  - Florian Luca
AU  - Carl Pomerance
TI  - On the range of Carmichael's universal-exponent function
JO  - Acta Arithmetica
PY  - 2014
SP  - 289
EP  - 308
VL  - 162
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-6/
DO  - 10.4064/aa162-3-6
LA  - en
ID  - 10_4064_aa162_3_6
ER  - 
%0 Journal Article
%A Florian Luca
%A Carl Pomerance
%T On the range of Carmichael's universal-exponent function
%J Acta Arithmetica
%D 2014
%P 289-308
%V 162
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-6/
%R 10.4064/aa162-3-6
%G en
%F 10_4064_aa162_3_6
Florian Luca; Carl Pomerance. On the range of Carmichael's universal-exponent function. Acta Arithmetica, Tome 162 (2014) no. 3, pp. 289-308. doi : 10.4064/aa162-3-6. http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-6/

Cité par Sources :