On the range of Carmichael's universal-exponent function
Acta Arithmetica, Tome 162 (2014) no. 3, pp. 289-308
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\lambda $ denote Carmichael's function, so $\lambda (n)$ is the universal exponent for the multiplicative group modulo $n$. It is closely related to Euler's $\varphi $-function, but we show here that the image of $\lambda $ is much denser than the image of $\varphi $. In particular the number of $\lambda $-values to $x$ exceeds $x/(\log x)^{.36}$ for all large $x$, while for $\varphi $ it is equal to $x/(\log x)^{1+o(1)}$, an old result of Erdős. We also improve on an earlier result of the first author and Friedlander giving an upper bound for the distribution of $\lambda $-values.
Keywords:
lambda denote carmichaels function lambda universal exponent multiplicative group modulo closely related eulers varphi function here image lambda much denser image varphi particular number lambda values exceeds log large while varphi equal log old result erd improve earlier result first author friedlander giving upper bound distribution lambda values
Affiliations des auteurs :
Florian Luca 1 ; Carl Pomerance 2
@article{10_4064_aa162_3_6,
author = {Florian Luca and Carl Pomerance},
title = {On the range of {Carmichael's} universal-exponent function},
journal = {Acta Arithmetica},
pages = {289--308},
publisher = {mathdoc},
volume = {162},
number = {3},
year = {2014},
doi = {10.4064/aa162-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-6/}
}
TY - JOUR AU - Florian Luca AU - Carl Pomerance TI - On the range of Carmichael's universal-exponent function JO - Acta Arithmetica PY - 2014 SP - 289 EP - 308 VL - 162 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-6/ DO - 10.4064/aa162-3-6 LA - en ID - 10_4064_aa162_3_6 ER -
Florian Luca; Carl Pomerance. On the range of Carmichael's universal-exponent function. Acta Arithmetica, Tome 162 (2014) no. 3, pp. 289-308. doi: 10.4064/aa162-3-6
Cité par Sources :