Four squares of primes and powers of 2
Acta Arithmetica, Tome 162 (2014) no. 3, pp. 255-271.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By developing the method of Wooley on the quadratic Waring–Goldbach problem, we prove that all sufficiently large even integers can be expressed as a sum of four squares of primes and $46$ powers of $2$.
DOI : 10.4064/aa162-3-4
Keywords: developing method wooley quadratic waring goldbach problem prove sufficiently large even integers expressed sum squares primes powers

Lilu Zhao 1

1 School of Mathematics Hefei University of Technology Hefei 230009, People's Republic of China
@article{10_4064_aa162_3_4,
     author = {Lilu Zhao},
     title = {Four squares of primes and powers of 2},
     journal = {Acta Arithmetica},
     pages = {255--271},
     publisher = {mathdoc},
     volume = {162},
     number = {3},
     year = {2014},
     doi = {10.4064/aa162-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-4/}
}
TY  - JOUR
AU  - Lilu Zhao
TI  - Four squares of primes and powers of 2
JO  - Acta Arithmetica
PY  - 2014
SP  - 255
EP  - 271
VL  - 162
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-4/
DO  - 10.4064/aa162-3-4
LA  - en
ID  - 10_4064_aa162_3_4
ER  - 
%0 Journal Article
%A Lilu Zhao
%T Four squares of primes and powers of 2
%J Acta Arithmetica
%D 2014
%P 255-271
%V 162
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-4/
%R 10.4064/aa162-3-4
%G en
%F 10_4064_aa162_3_4
Lilu Zhao. Four squares of primes and powers of 2. Acta Arithmetica, Tome 162 (2014) no. 3, pp. 255-271. doi : 10.4064/aa162-3-4. http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-4/

Cité par Sources :