Diophantine equations with Euler polynomials
Acta Arithmetica, Tome 161 (2013) no. 3, pp. 267-281
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We determine decomposition properties of Euler polynomials and using a strong result relating polynomial decomposition and diophantine equations in two separated variables, we characterize those $g(x)\in \mathbb {Q}[x]$ for which the diophantine equation
$$-1^k +2 ^k - \cdots + (-1)^{x} x^k=g(y) \hskip 1em\ {\rm with}\ k\geq 7$$ may have infinitely many integer solutions. Apart from the exceptional cases we list explicitly, the equation has only finitely many integer solutions.
Keywords:
determine decomposition properties euler polynomials using strong result relating polynomial decomposition diophantine equations separated variables characterize those mathbb which diophantine equation cdots y hskip geq may have infinitely many integer solutions apart exceptional cases list explicitly equation has only finitely many integer solutions
Affiliations des auteurs :
Dijana Kreso 1 ; Csaba Rakaczki 2
@article{10_4064_aa161_3_5,
author = {Dijana Kreso and Csaba Rakaczki},
title = {Diophantine equations with {Euler} polynomials},
journal = {Acta Arithmetica},
pages = {267--281},
publisher = {mathdoc},
volume = {161},
number = {3},
year = {2013},
doi = {10.4064/aa161-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-3-5/}
}
Dijana Kreso; Csaba Rakaczki. Diophantine equations with Euler polynomials. Acta Arithmetica, Tome 161 (2013) no. 3, pp. 267-281. doi: 10.4064/aa161-3-5
Cité par Sources :