Multiplicative relations on binary recurrences
Acta Arithmetica, Tome 161 (2013) no. 2, pp. 183-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a binary recurrence $\{u_n\}_{n\ge 0}$, we consider the Diophantine equation $$ u_{n_1}^{x_1} \cdots u_{n_L}^{x_L}=1 $$ with nonnegative integer unknowns $n_1,\ldots ,n_L$, where $n_i\not =n_j$ for $1\le i j\le L$, $\max\{|x_i|: 1\le i\le L\}\leq K$, and $K$ is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.
DOI : 10.4064/aa161-2-4
Keywords: given binary recurrence consider diophantine equation cdots nonnegative integer unknowns ldots where max leq fixed parameter above equation has only finitely many solutions largest explicitly bounded demonstrate strength method completely solving particular diophantine equation above form

Florian Luca 1 ; Volker Ziegler 2

1 Mathematical Institute, UNAM Mexico, DF, 04510, Mexico
2 Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Altenbergerstr. 69 A-4040 Linz, Austria
@article{10_4064_aa161_2_4,
     author = {Florian Luca and Volker Ziegler},
     title = {Multiplicative relations on binary recurrences},
     journal = {Acta Arithmetica},
     pages = {183--199},
     publisher = {mathdoc},
     volume = {161},
     number = {2},
     year = {2013},
     doi = {10.4064/aa161-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-4/}
}
TY  - JOUR
AU  - Florian Luca
AU  - Volker Ziegler
TI  - Multiplicative relations on binary recurrences
JO  - Acta Arithmetica
PY  - 2013
SP  - 183
EP  - 199
VL  - 161
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-4/
DO  - 10.4064/aa161-2-4
LA  - en
ID  - 10_4064_aa161_2_4
ER  - 
%0 Journal Article
%A Florian Luca
%A Volker Ziegler
%T Multiplicative relations on binary recurrences
%J Acta Arithmetica
%D 2013
%P 183-199
%V 161
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-4/
%R 10.4064/aa161-2-4
%G en
%F 10_4064_aa161_2_4
Florian Luca; Volker Ziegler. Multiplicative relations on binary recurrences. Acta Arithmetica, Tome 161 (2013) no. 2, pp. 183-199. doi : 10.4064/aa161-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa161-2-4/

Cité par Sources :