Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz
Acta Arithmetica, Tome 161 (2013) no. 1, pp. 69-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varOmega(n)$ and $\omega(n)$ denote the number of distinct prime factors of the positive integer $n$, counted respectively with and without multiplicity. Let $d_k(n)$ denote the Piltz function (which counts the number of ways of writing $n$ as a product of $k$ factors). We obtain a precise estimate of the sum \[ \sum_{n\leq x,\varOmega(n)-\omega(n)=q}f(n) \] for a class of multiplicative functions $f$, including in particular $f(n)=d_k(n)$, unconditionally if $1\leq k\leq 3$, and under some reasonable assumptions if $k\geq 4$.The result also applies to $f(n)={\varphi(n)}/{n}$ (where $\varphi$ is the totient function), to $f(n)={\sigma_r(n)}/{n^r}$ (where $\sigma_r$ is the sum of $r$th powers of divisors) and to functions related to the notion of exponential divisor. It generalizes similar results by J. Wu and Y.-K. Lau when $f(n)=1$, respectively $f(n)=d_2(n)$.
DOI : 10.4064/aa161-1-5
Mots-clés : varomega omega denote number distinct prime factors positive integer counted respectively without multiplicity denote piltz function which counts number ways writing product factors obtain precise estimate sum sum leq varomega omega class multiplicative functions including particular unconditionally leq leq under reasonable assumptions geq result applies varphi where varphi totient function sigma where sigma sum rth powers divisors functions related notion exponential divisor generalizes similar results k lau respectively

Rimer Zurita 1

1 Section de Mathématiques Université de Genève Case postale 64 2-4, rue du Lièvre 1211 Genève 4, Suisse
@article{10_4064_aa161_1_5,
     author = {Rimer Zurita},
     title = {Sur un probl\`eme de {R\'enyi} et {Ivi\'c} concernant les fonctions de diviseurs de {Piltz}},
     journal = {Acta Arithmetica},
     pages = {69--100},
     publisher = {mathdoc},
     volume = {161},
     number = {1},
     year = {2013},
     doi = {10.4064/aa161-1-5},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-5/}
}
TY  - JOUR
AU  - Rimer Zurita
TI  - Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz
JO  - Acta Arithmetica
PY  - 2013
SP  - 69
EP  - 100
VL  - 161
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-5/
DO  - 10.4064/aa161-1-5
LA  - fr
ID  - 10_4064_aa161_1_5
ER  - 
%0 Journal Article
%A Rimer Zurita
%T Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz
%J Acta Arithmetica
%D 2013
%P 69-100
%V 161
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-5/
%R 10.4064/aa161-1-5
%G fr
%F 10_4064_aa161_1_5
Rimer Zurita. Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz. Acta Arithmetica, Tome 161 (2013) no. 1, pp. 69-100. doi : 10.4064/aa161-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-5/

Cité par Sources :