Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz
Acta Arithmetica, Tome 161 (2013) no. 1, pp. 69-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\varOmega(n)$ and $\omega(n)$ denote the number of distinct prime factors of the positive integer $n$, counted respectively with and without multiplicity. Let $d_k(n)$ denote the Piltz function (which counts the number of ways of writing $n$ as a product of $k$ factors). We obtain a precise estimate of the sum
\[
\sum_{n\leq x,\varOmega(n)-\omega(n)=q}f(n)
\]
for a class of multiplicative functions $f$, including in particular $f(n)=d_k(n)$, unconditionally if $1\leq k\leq 3$, and under some reasonable assumptions if $k\geq 4$.The result also applies to $f(n)={\varphi(n)}/{n}$ (where $\varphi$ is the totient function), to $f(n)={\sigma_r(n)}/{n^r}$ (where $\sigma_r$ is the sum of $r$th powers of divisors) and to functions related to the notion of exponential divisor. It generalizes similar results by J. Wu and Y.-K. Lau when $f(n)=1$, respectively $f(n)=d_2(n)$.
Mots-clés :
varomega omega denote number distinct prime factors positive integer counted respectively without multiplicity denote piltz function which counts number ways writing product factors obtain precise estimate sum sum leq varomega omega class multiplicative functions including particular unconditionally leq leq under reasonable assumptions geq result applies varphi where varphi totient function sigma where sigma sum rth powers divisors functions related notion exponential divisor generalizes similar results k lau respectively
Affiliations des auteurs :
Rimer Zurita 1
@article{10_4064_aa161_1_5,
author = {Rimer Zurita},
title = {Sur un probl\`eme de {R\'enyi} et {Ivi\'c} concernant les fonctions de diviseurs de {Piltz}},
journal = {Acta Arithmetica},
pages = {69--100},
publisher = {mathdoc},
volume = {161},
number = {1},
year = {2013},
doi = {10.4064/aa161-1-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-5/}
}
TY - JOUR AU - Rimer Zurita TI - Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz JO - Acta Arithmetica PY - 2013 SP - 69 EP - 100 VL - 161 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa161-1-5/ DO - 10.4064/aa161-1-5 LA - fr ID - 10_4064_aa161_1_5 ER -
Rimer Zurita. Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz. Acta Arithmetica, Tome 161 (2013) no. 1, pp. 69-100. doi: 10.4064/aa161-1-5
Cité par Sources :