The image of the natural homomorphism of Witt rings of orders in a global field
Acta Arithmetica, Tome 160 (2013) no. 4, pp. 349-384
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a Dedekind domain whose field of fractions is a global field. Moreover, let $\mathcal O R$ be an order. We examine the image of the natural homomorphism $\varphi \colon W\mathcal {O}\to WR$ of the corresponding Witt rings. We formulate necessary and sufficient conditions for the surjectivity of $\varphi $ in the case of all nonreal quadratic number fields, all real quadratic number fields $K$ such that $-1$ is a norm in the extension $K/\mathbb Q$, and all quadratic function fields.
Keywords:
dedekind domain whose field fractions global field moreover mathcal order examine image natural homomorphism varphi colon mathcal corresponding witt rings formulate necessary sufficient conditions surjectivity varphi nonreal quadratic number fields real quadratic number fields norm extension mathbb quadratic function fields
Affiliations des auteurs :
Beata Rothkegel 1
@article{10_4064_aa160_4_4,
author = {Beata Rothkegel},
title = {The image of the natural homomorphism of {Witt} rings of orders in a global field},
journal = {Acta Arithmetica},
pages = {349--384},
publisher = {mathdoc},
volume = {160},
number = {4},
year = {2013},
doi = {10.4064/aa160-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-4-4/}
}
TY - JOUR AU - Beata Rothkegel TI - The image of the natural homomorphism of Witt rings of orders in a global field JO - Acta Arithmetica PY - 2013 SP - 349 EP - 384 VL - 160 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa160-4-4/ DO - 10.4064/aa160-4-4 LA - en ID - 10_4064_aa160_4_4 ER -
Beata Rothkegel. The image of the natural homomorphism of Witt rings of orders in a global field. Acta Arithmetica, Tome 160 (2013) no. 4, pp. 349-384. doi: 10.4064/aa160-4-4
Cité par Sources :