Propagation de la 2-birationalité
Acta Arithmetica, Tome 160 (2013) no. 3, pp. 285-301
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $L/K$ be a $2$-birational CM-extension of a totally real $2$-rational number field. We characterize in terms of tame ramification totally real $2$-extensions $K'/K$ such that the compositum $L'=LK'$ is still $2$-birational. In case the $2$-extension $K'/K$ is linearly disjoint from the cyclotomic $\mathbb {Z}_2$-extension $K^c/K$, we prove that $K'/K$ is at most quadratic. Furthermore, we construct infinite towers of such $2$-extensions.
Mots-clés :
birational cm extension totally real rational number field characterize terms tame ramification totally real extensions compositum still birational extension linearly disjoint cyclotomic mathbb extension prove quadratic furthermore construct infinite towers extensions
Affiliations des auteurs :
Claire Bourbon 1 ; Jean-François Jaulent 2
@article{10_4064_aa160_3_5,
author = {Claire Bourbon and Jean-Fran\c{c}ois Jaulent},
title = {Propagation de la 2-birationalit\'e},
journal = {Acta Arithmetica},
pages = {285--301},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {2013},
doi = {10.4064/aa160-3-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa160-3-5/}
}
Claire Bourbon; Jean-François Jaulent. Propagation de la 2-birationalité. Acta Arithmetica, Tome 160 (2013) no. 3, pp. 285-301. doi: 10.4064/aa160-3-5
Cité par Sources :