The multiplicity of the zero at 1 of polynomials with constrained coefficients
Acta Arithmetica, Tome 159 (2013) no. 4, pp. 387-395.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $n \in {\mathbb N}$, $L > 0$, and $p \geq 1$ let $\kappa_p(n,L)$ be the largest possible value of $k$ for which there is a polynomial $P \neq 0$ of the form $$P(x) = \sum_{j=0}^n{a_jx^j}, \quad\ |a_0| \geq L \Big( \sum_{j=1}^n{|a_j|^p} \Big)^{1/p}, \, a_j \in {\mathbb C}, $$ such that $(x-1)^k$ divides $P(x)$. For $n \in {\mathbb N}$ and $L > 0$ let $\kappa_\infty(n,L)$ be the largest possible value of $k$ for which there is a polynomial $P \neq 0$ of the form $$P(x) = \sum_{j=0}^n{a_jx^j}, \quad\ |a_0| \geq L \max_{1 \leq j \leq n}{|a_j|}, \, a_j \in {\mathbb C}, $$ such that $(x-1)^k$ divides $P(x)$. We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 \sqrt{n/L} -1 \leq \kappa_{\infty}(n,L) \leq c_2 \sqrt{n/L}$$ for every $L \geq 1$. This complements an earlier result of the authors valid for every $n \in {\mathbb N}$ and $L \in (0,1]$. Essentially sharp results on the size of $\kappa_2(n,L)$ are also proved.
DOI : 10.4064/aa159-4-7
Keywords: mathbb geq kappa largest possible value which there polynomial neq form sum quad geq sum mathbb x divides mathbb kappa infty largest possible value which there polynomial neq form sum quad geq max leq leq mathbb x divides prove there absolute constants sqrt leq kappa infty leq sqrt every geq complements earlier result authors valid every mathbb essentially sharp results size kappa proved

Peter Borwein 1 ; Tamás Erdélyi 2 ; Géza Kós 3

1 Department of Mathematics and Statistics Simon Fraser University Burnaby, BC, Canada V5A 1S6
2 Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
3 Mathematical Institute Lóránd Eötvös University Pázmány P. s. 1/c Budapest, Hungary H-1117 and Computer and Automation Research Institute Kende u. 13-17 Budapest, Hungary H-1111
@article{10_4064_aa159_4_7,
     author = {Peter Borwein and Tam\'as Erd\'elyi and G\'eza K\'os},
     title = {The multiplicity of the zero at 1 of polynomials with constrained coefficients},
     journal = {Acta Arithmetica},
     pages = {387--395},
     publisher = {mathdoc},
     volume = {159},
     number = {4},
     year = {2013},
     doi = {10.4064/aa159-4-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-7/}
}
TY  - JOUR
AU  - Peter Borwein
AU  - Tamás Erdélyi
AU  - Géza Kós
TI  - The multiplicity of the zero at 1 of polynomials with constrained coefficients
JO  - Acta Arithmetica
PY  - 2013
SP  - 387
EP  - 395
VL  - 159
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-7/
DO  - 10.4064/aa159-4-7
LA  - en
ID  - 10_4064_aa159_4_7
ER  - 
%0 Journal Article
%A Peter Borwein
%A Tamás Erdélyi
%A Géza Kós
%T The multiplicity of the zero at 1 of polynomials with constrained coefficients
%J Acta Arithmetica
%D 2013
%P 387-395
%V 159
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-7/
%R 10.4064/aa159-4-7
%G en
%F 10_4064_aa159_4_7
Peter Borwein; Tamás Erdélyi; Géza Kós. The multiplicity of the zero at 1 of polynomials with constrained coefficients. Acta Arithmetica, Tome 159 (2013) no. 4, pp. 387-395. doi : 10.4064/aa159-4-7. http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-7/

Cité par Sources :