The multiplicity of the zero at 1 of polynomials with constrained coefficients
Acta Arithmetica, Tome 159 (2013) no. 4, pp. 387-395
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $n \in {\mathbb N}$, $L > 0$, and $p \geq 1$ let $\kappa_p(n,L)$ be the largest possible value of $k$ for which there is a polynomial $P \neq 0$ of the form
$$P(x) = \sum_{j=0}^n{a_jx^j}, \quad\ |a_0| \geq L \Big( \sum_{j=1}^n{|a_j|^p} \Big)^{1/p}, \, a_j \in {\mathbb C}, $$
such that $(x-1)^k$ divides $P(x)$. For $n \in {\mathbb N}$ and $L > 0$ let $\kappa_\infty(n,L)$ be the largest possible value of $k$ for which there is a
polynomial $P \neq 0$ of the form
$$P(x) = \sum_{j=0}^n{a_jx^j}, \quad\ |a_0| \geq L \max_{1 \leq j \leq n}{|a_j|}, \, a_j \in {\mathbb C}, $$
such that $(x-1)^k$ divides $P(x)$.
We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that
$$c_1 \sqrt{n/L} -1 \leq \kappa_{\infty}(n,L) \leq c_2 \sqrt{n/L}$$
for every $L \geq 1$. This complements an earlier result of the authors
valid for every $n \in {\mathbb N}$ and $L \in (0,1]$. Essentially sharp results on the size of $\kappa_2(n,L)$ are also proved.
Keywords:
mathbb geq kappa largest possible value which there polynomial neq form sum quad geq sum mathbb x divides mathbb kappa infty largest possible value which there polynomial neq form sum quad geq max leq leq mathbb x divides prove there absolute constants sqrt leq kappa infty leq sqrt every geq complements earlier result authors valid every mathbb essentially sharp results size kappa proved
Affiliations des auteurs :
Peter Borwein 1 ; Tamás Erdélyi 2 ; Géza Kós 3
@article{10_4064_aa159_4_7,
author = {Peter Borwein and Tam\'as Erd\'elyi and G\'eza K\'os},
title = {The multiplicity of the zero at 1 of polynomials with constrained coefficients},
journal = {Acta Arithmetica},
pages = {387--395},
publisher = {mathdoc},
volume = {159},
number = {4},
year = {2013},
doi = {10.4064/aa159-4-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-7/}
}
TY - JOUR AU - Peter Borwein AU - Tamás Erdélyi AU - Géza Kós TI - The multiplicity of the zero at 1 of polynomials with constrained coefficients JO - Acta Arithmetica PY - 2013 SP - 387 EP - 395 VL - 159 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-7/ DO - 10.4064/aa159-4-7 LA - en ID - 10_4064_aa159_4_7 ER -
%0 Journal Article %A Peter Borwein %A Tamás Erdélyi %A Géza Kós %T The multiplicity of the zero at 1 of polynomials with constrained coefficients %J Acta Arithmetica %D 2013 %P 387-395 %V 159 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-7/ %R 10.4064/aa159-4-7 %G en %F 10_4064_aa159_4_7
Peter Borwein; Tamás Erdélyi; Géza Kós. The multiplicity of the zero at 1 of polynomials with constrained coefficients. Acta Arithmetica, Tome 159 (2013) no. 4, pp. 387-395. doi: 10.4064/aa159-4-7
Cité par Sources :