Nonvanishing of a certain Bernoulli number and a related topic
Acta Arithmetica, Tome 159 (2013) no. 4, pp. 375-386.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p=1+2^{e+1}q$ be an odd prime number with $q$ an odd integer. Let $\delta $ (resp. $\varphi $) be an odd (resp. even) Dirichlet character of conductor $p$ and order $2^{e+1}$ (resp. order $d_{\varphi }$ dividing $q$), and let $\psi _n$ be an even character of conductor $p^{n+1}$ and order $p^n$. We put $\chi =\delta \varphi \psi _n$, whose value is contained in $K_n=\mathbb {Q}(\zeta _{(p-1)p^n})$. It is well known that the Bernoulli number $B_{1,\chi }$ is not zero, which is shown in an analytic way. In the extreme cases $d_{\varphi }=1$ and $q$, we show, in an algebraic and elementary manner, a stronger nonvanishing result: ${\rm Tr}_{n/1}(\xi B_{1,\chi }) \not =0$ for any $p^n$th root $\xi $ of unity, where ${\rm Tr}_{n/1}$ is the trace map from $K_n$ to $K_1$.
DOI : 10.4064/aa159-4-6
Keywords: odd prime number odd integer delta resp varphi odd resp even dirichlet character conductor order resp order varphi dividing psi even character conductor order put chi delta varphi psi whose value contained mathbb zeta p known bernoulli number chi zero which shown analytic extreme cases varphi algebraic elementary manner stronger nonvanishing result chi nth root unity where trace map

Humio Ichimura 1

1 Faculty of Science Ibaraki University Bunkyo 2-1-1 Mito, 310-8512, Japan
@article{10_4064_aa159_4_6,
     author = {Humio Ichimura},
     title = {Nonvanishing of a certain {Bernoulli} number
 and a related topic},
     journal = {Acta Arithmetica},
     pages = {375--386},
     publisher = {mathdoc},
     volume = {159},
     number = {4},
     year = {2013},
     doi = {10.4064/aa159-4-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-6/}
}
TY  - JOUR
AU  - Humio Ichimura
TI  - Nonvanishing of a certain Bernoulli number
 and a related topic
JO  - Acta Arithmetica
PY  - 2013
SP  - 375
EP  - 386
VL  - 159
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-6/
DO  - 10.4064/aa159-4-6
LA  - en
ID  - 10_4064_aa159_4_6
ER  - 
%0 Journal Article
%A Humio Ichimura
%T Nonvanishing of a certain Bernoulli number
 and a related topic
%J Acta Arithmetica
%D 2013
%P 375-386
%V 159
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-6/
%R 10.4064/aa159-4-6
%G en
%F 10_4064_aa159_4_6
Humio Ichimura. Nonvanishing of a certain Bernoulli number
 and a related topic. Acta Arithmetica, Tome 159 (2013) no. 4, pp. 375-386. doi : 10.4064/aa159-4-6. http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-6/

Cité par Sources :