Lower bounds for a conjecture of Erdős and Turán
Acta Arithmetica, Tome 159 (2013) no. 4, pp. 301-313.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study representation functions of asymptotic additive bases and more general subsets of $\mathbb N$ (sets with few nonrepresentable numbers). We prove that if $\mathbb N\setminus (A+A)$ has sufficiently small upper density (as in the case of asymptotic bases) then there are infinitely many numbers with more than five representations in $A+A$, counting order.
DOI : 10.4064/aa159-4-1
Keywords: study representation functions asymptotic additive bases general subsets mathbb sets few nonrepresentable numbers prove mathbb setminus has sufficiently small upper density asymptotic bases there infinitely many numbers five representations counting order

Ioannis Konstantoulas 1

1 Department of Mathematics University of Illinois 1409 W. Green St. Urbana, IL 61801, U.S.A.
@article{10_4064_aa159_4_1,
     author = {Ioannis Konstantoulas},
     title = {Lower bounds for a conjecture of {Erd\H{o}s} and {Tur\'an}},
     journal = {Acta Arithmetica},
     pages = {301--313},
     publisher = {mathdoc},
     volume = {159},
     number = {4},
     year = {2013},
     doi = {10.4064/aa159-4-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-1/}
}
TY  - JOUR
AU  - Ioannis Konstantoulas
TI  - Lower bounds for a conjecture of Erdős and Turán
JO  - Acta Arithmetica
PY  - 2013
SP  - 301
EP  - 313
VL  - 159
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-1/
DO  - 10.4064/aa159-4-1
LA  - en
ID  - 10_4064_aa159_4_1
ER  - 
%0 Journal Article
%A Ioannis Konstantoulas
%T Lower bounds for a conjecture of Erdős and Turán
%J Acta Arithmetica
%D 2013
%P 301-313
%V 159
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-1/
%R 10.4064/aa159-4-1
%G en
%F 10_4064_aa159_4_1
Ioannis Konstantoulas. Lower bounds for a conjecture of Erdős and Turán. Acta Arithmetica, Tome 159 (2013) no. 4, pp. 301-313. doi : 10.4064/aa159-4-1. http://geodesic.mathdoc.fr/articles/10.4064/aa159-4-1/

Cité par Sources :