Legendre polynomials and supercongruences
Acta Arithmetica, Tome 159 (2013) no. 2, pp. 169-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p>3$ be a prime, and let $R_p$ be the set of rational numbers whose denominator is not divisible by $p$. Let $\{P_n(x)\}$ be the Legendre polynomials. In this paper we mainly show that for $m,n,t\in R_p$ with $m\not\equiv 0\pmod p$, $$ P_{[\frac p6]}(t) \equiv -\biggl(\frac 3p\biggr)\sum_{x=0}^{p-1}\biggl(\frac{x^3-3x+2t}p\biggr)\pmod p $$ and $$ \biggl(\sum_{x=0}^{p-1}\biggl(\frac{x^3+mx+n}p\biggr)\biggr)^2 \equiv \biggl(\frac{-3m}p\biggr) \sum_{k=0}^{[p/6]}\binom{2k}k\binom{3k}k\binom{6k}{3k} \biggl(\frac{4m^3+27n^2}{12^3\cdot 4m^3}\biggr)^k\pmod p, $$ where $(\frac ap)$ is the Legendre symbol and $[x]$ is the greatest integer function. As an application we solve some conjectures of Z. W. Sun and the author concerning $\sum_{k=0}^{p-1}\binom{2k}k\binom{3k}k\binom{6k}{3k}/m^k\pmod {p^2}$, where $m$ is an integer not divisible by $p$.
DOI : 10.4064/aa159-2-6
Mots-clés : prime set rational numbers whose denominator divisible legendre polynomials paper mainly equiv pmod frac equiv biggl frac biggr sum p biggl frac biggr pmod biggl sum p biggl frac biggr biggr equiv biggl frac biggr sum binom binom binom biggl frac cdot biggr pmod where frac legendre symbol greatest integer function application solve conjectures sun author concerning sum p binom binom binom pmod where integer divisible nbsp

Zhi-Hong Sun 1

1 School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223001, P.R. China
@article{10_4064_aa159_2_6,
     author = {Zhi-Hong Sun},
     title = {Legendre polynomials and supercongruences},
     journal = {Acta Arithmetica},
     pages = {169--200},
     publisher = {mathdoc},
     volume = {159},
     number = {2},
     year = {2013},
     doi = {10.4064/aa159-2-6},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-6/}
}
TY  - JOUR
AU  - Zhi-Hong Sun
TI  - Legendre polynomials and supercongruences
JO  - Acta Arithmetica
PY  - 2013
SP  - 169
EP  - 200
VL  - 159
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-6/
DO  - 10.4064/aa159-2-6
LA  - fr
ID  - 10_4064_aa159_2_6
ER  - 
%0 Journal Article
%A Zhi-Hong Sun
%T Legendre polynomials and supercongruences
%J Acta Arithmetica
%D 2013
%P 169-200
%V 159
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-6/
%R 10.4064/aa159-2-6
%G fr
%F 10_4064_aa159_2_6
Zhi-Hong Sun. Legendre polynomials and supercongruences. Acta Arithmetica, Tome 159 (2013) no. 2, pp. 169-200. doi : 10.4064/aa159-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-6/

Cité par Sources :