Legendre polynomials and supercongruences
Acta Arithmetica, Tome 159 (2013) no. 2, pp. 169-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p>3$ be a prime, and
let $R_p$ be the set of rational numbers whose denominator is not
divisible by $p$. Let $\{P_n(x)\}$ be the Legendre polynomials. In
this paper we mainly show that for $m,n,t\in R_p$ with $m\not\equiv
0\pmod p$,
$$
P_{[\frac p6]}(t) \equiv -\biggl(\frac 3p\biggr)\sum_{x=0}^{p-1}\biggl(\frac{x^3-3x+2t}p\biggr)\pmod p
$$
and
$$
\biggl(\sum_{x=0}^{p-1}\biggl(\frac{x^3+mx+n}p\biggr)\biggr)^2
\equiv \biggl(\frac{-3m}p\biggr)
\sum_{k=0}^{[p/6]}\binom{2k}k\binom{3k}k\binom{6k}{3k}
\biggl(\frac{4m^3+27n^2}{12^3\cdot 4m^3}\biggr)^k\pmod p,
$$
where $(\frac ap)$ is the Legendre symbol and $[x]$ is the
greatest integer function. As an application we solve some
conjectures of Z. W. Sun and the author concerning
$\sum_{k=0}^{p-1}\binom{2k}k\binom{3k}k\binom{6k}{3k}/m^k\pmod
{p^2}$, where $m$ is an integer not divisible by $p$.
Mots-clés :
prime set rational numbers whose denominator divisible legendre polynomials paper mainly equiv pmod frac equiv biggl frac biggr sum p biggl frac biggr pmod biggl sum p biggl frac biggr biggr equiv biggl frac biggr sum binom binom binom biggl frac cdot biggr pmod where frac legendre symbol greatest integer function application solve conjectures sun author concerning sum p binom binom binom pmod where integer divisible nbsp
Affiliations des auteurs :
Zhi-Hong Sun 1
@article{10_4064_aa159_2_6,
author = {Zhi-Hong Sun},
title = {Legendre polynomials and supercongruences},
journal = {Acta Arithmetica},
pages = {169--200},
publisher = {mathdoc},
volume = {159},
number = {2},
year = {2013},
doi = {10.4064/aa159-2-6},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-2-6/}
}
Zhi-Hong Sun. Legendre polynomials and supercongruences. Acta Arithmetica, Tome 159 (2013) no. 2, pp. 169-200. doi: 10.4064/aa159-2-6
Cité par Sources :