On the quartic character of quadratic units
Acta Arithmetica, Tome 159 (2013) no. 1, pp. 89-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathbb Z$ be the set of integers, and let $(m,n)$ be
the greatest common divisor of integers $m$ and $n$. Let $p$ be a prime of
the form $4k+1$ and $p=c^2+d^2$
with $c,d\in\mathbb Z$, $d=2^rd_0$ and $c\equiv d_0\equiv 1\pmod 4$.
In the paper we determine
$\def\sls#1#2{\bigl(\frac{#1}{#2}\bigr)}\sls{b+\sqrt{b^2+4^{\alpha}}}2^{\frac{p-1}4}\pmod p$ for
$p=x^2+(b^2+4^{\alpha})y^2$ $(b,x,y\in\mathbb Z,\ 2\nmid b)$, and
$(2a+\sqrt{4a^2+1})^{\frac{p-1}4}\pmod p$ for $p=x^2+(4a^2+1)y^2$
$(a,x,y\in\mathbb Z)$ on the condition that $(c,x+d)=1$ or $(d_0,x+c)=1$.
As applications we obtain the congruence for $U_{(p-1)/4}\pmod p$
and the criterion for $p\,|\, U_{(p-1)/8}$ (if $p\equiv 1\pmod 8$),
where $\{U_n\}$ is the
Lucas sequence given by $U_0=0,\ U_1=1$ and $U_{n+1}=bU_n+U_{n-1}\
(n\ge 1)$, and $b\not\equiv 2\pmod 4$. Hence we partially solve some
conjectures that we posed in 2009.
Keywords:
mathbb set integers greatest common divisor integers prime form mathbb equiv equiv pmod paper determine def sls bigl frac bigr sls sqrt alpha frac p pmod alpha mathbb nmid sqrt frac p pmod mathbb condition applications obtain congruence p pmod criterion p equiv pmod where lucas sequence given n equiv pmod hence partially solve conjectures posed
Affiliations des auteurs :
Zhi-Hong Sun 1
@article{10_4064_aa159_1_5,
author = {Zhi-Hong Sun},
title = {On the quartic character of quadratic units},
journal = {Acta Arithmetica},
pages = {89--100},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {2013},
doi = {10.4064/aa159-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-5/}
}
Zhi-Hong Sun. On the quartic character of quadratic units. Acta Arithmetica, Tome 159 (2013) no. 1, pp. 89-100. doi: 10.4064/aa159-1-5
Cité par Sources :