On the quartic character of quadratic units
Acta Arithmetica, Tome 159 (2013) no. 1, pp. 89-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathbb Z$ be the set of integers, and let $(m,n)$ be the greatest common divisor of integers $m$ and $n$. Let $p$ be a prime of the form $4k+1$ and $p=c^2+d^2$ with $c,d\in\mathbb Z$, $d=2^rd_0$ and $c\equiv d_0\equiv 1\pmod 4$. In the paper we determine $\def\sls#1#2{\bigl(\frac{#1}{#2}\bigr)}\sls{b+\sqrt{b^2+4^{\alpha}}}2^{\frac{p-1}4}\pmod p$ for $p=x^2+(b^2+4^{\alpha})y^2$ $(b,x,y\in\mathbb Z,\ 2\nmid b)$, and $(2a+\sqrt{4a^2+1})^{\frac{p-1}4}\pmod p$ for $p=x^2+(4a^2+1)y^2$ $(a,x,y\in\mathbb Z)$ on the condition that $(c,x+d)=1$ or $(d_0,x+c)=1$. As applications we obtain the congruence for $U_{(p-1)/4}\pmod p$ and the criterion for $p\,|\, U_{(p-1)/8}$ (if $p\equiv 1\pmod 8$), where $\{U_n\}$ is the Lucas sequence given by $U_0=0,\ U_1=1$ and $U_{n+1}=bU_n+U_{n-1}\ (n\ge 1)$, and $b\not\equiv 2\pmod 4$. Hence we partially solve some conjectures that we posed in 2009.
DOI : 10.4064/aa159-1-5
Keywords: mathbb set integers greatest common divisor integers prime form mathbb equiv equiv pmod paper determine def sls bigl frac bigr sls sqrt alpha frac p pmod alpha mathbb nmid sqrt frac p pmod mathbb condition applications obtain congruence p pmod criterion p equiv pmod where lucas sequence given n equiv pmod hence partially solve conjectures posed

Zhi-Hong Sun 1

1 School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223001, P.R. China
@article{10_4064_aa159_1_5,
     author = {Zhi-Hong Sun},
     title = {On the quartic character of quadratic units},
     journal = {Acta Arithmetica},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2013},
     doi = {10.4064/aa159-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-5/}
}
TY  - JOUR
AU  - Zhi-Hong Sun
TI  - On the quartic character of quadratic units
JO  - Acta Arithmetica
PY  - 2013
SP  - 89
EP  - 100
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-5/
DO  - 10.4064/aa159-1-5
LA  - en
ID  - 10_4064_aa159_1_5
ER  - 
%0 Journal Article
%A Zhi-Hong Sun
%T On the quartic character of quadratic units
%J Acta Arithmetica
%D 2013
%P 89-100
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-5/
%R 10.4064/aa159-1-5
%G en
%F 10_4064_aa159_1_5
Zhi-Hong Sun. On the quartic character of quadratic units. Acta Arithmetica, Tome 159 (2013) no. 1, pp. 89-100. doi : 10.4064/aa159-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-5/

Cité par Sources :