Lacunary formal power series and the Stern–Brocot sequence
Acta Arithmetica, Tome 159 (2013) no. 1, pp. 47-61
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $F(X) = \sum_{n \geq 0} (-1)^{\varepsilon_n} X^{-\lambda_n}$ be a real lacunary
formal power series, where $\varepsilon_n = 0, 1$ and $\lambda_{n+1}/\lambda_n > 2$.
It is known that the denominators $Q_n(X)$ of the convergents of its continued fraction
expansion are polynomials with coefficients $0, \pm 1$, and that the number of nonzero
terms in $Q_n(X)$ is the $n$th term of the Stern–Brocot sequence. We show that replacing
the index $n$ by any $2$-adic integer $\omega$ makes sense. We prove that $Q_{\omega}(X)$
is a polynomial if and only if $\omega \in {\mathbb Z}$. In all the other cases
$Q_{\omega}(X)$ is an infinite formal power series; we discuss its algebraic properties in the special case $\lambda_n = 2^{n+1} - 1$.
Keywords:
sum geq varepsilon lambda real lacunary formal power series where varepsilon lambda lambda known denominators convergents its continued fraction expansion polynomials coefficients number nonzero terms nth term stern brocot sequence replacing index adic integer omega makes sense prove omega polynomial only omega mathbb other cases omega infinite formal power series discuss its algebraic properties special lambda
Affiliations des auteurs :
Jean-Paul Allouche 1 ; Michel Mendès France 2
@article{10_4064_aa159_1_3,
author = {Jean-Paul Allouche and Michel Mend\`es France},
title = {Lacunary formal power series and the {Stern{\textendash}Brocot} sequence},
journal = {Acta Arithmetica},
pages = {47--61},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {2013},
doi = {10.4064/aa159-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-3/}
}
TY - JOUR AU - Jean-Paul Allouche AU - Michel Mendès France TI - Lacunary formal power series and the Stern–Brocot sequence JO - Acta Arithmetica PY - 2013 SP - 47 EP - 61 VL - 159 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-3/ DO - 10.4064/aa159-1-3 LA - en ID - 10_4064_aa159_1_3 ER -
Jean-Paul Allouche; Michel Mendès France. Lacunary formal power series and the Stern–Brocot sequence. Acta Arithmetica, Tome 159 (2013) no. 1, pp. 47-61. doi: 10.4064/aa159-1-3
Cité par Sources :