Lacunary formal power series and the Stern–Brocot sequence
Acta Arithmetica, Tome 159 (2013) no. 1, pp. 47-61.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $F(X) = \sum_{n \geq 0} (-1)^{\varepsilon_n} X^{-\lambda_n}$ be a real lacunary formal power series, where $\varepsilon_n = 0, 1$ and $\lambda_{n+1}/\lambda_n > 2$. It is known that the denominators $Q_n(X)$ of the convergents of its continued fraction expansion are polynomials with coefficients $0, \pm 1$, and that the number of nonzero terms in $Q_n(X)$ is the $n$th term of the Stern–Brocot sequence. We show that replacing the index $n$ by any $2$-adic integer $\omega$ makes sense. We prove that $Q_{\omega}(X)$ is a polynomial if and only if $\omega \in {\mathbb Z}$. In all the other cases $Q_{\omega}(X)$ is an infinite formal power series; we discuss its algebraic properties in the special case $\lambda_n = 2^{n+1} - 1$.
DOI : 10.4064/aa159-1-3
Keywords: sum geq varepsilon lambda real lacunary formal power series where varepsilon lambda lambda known denominators convergents its continued fraction expansion polynomials coefficients number nonzero terms nth term stern brocot sequence replacing index adic integer omega makes sense prove omega polynomial only omega mathbb other cases omega infinite formal power series discuss its algebraic properties special lambda

Jean-Paul Allouche 1 ; Michel Mendès France 2

1 Équipe Combinatoire et Optimisation CNRS, Institut de Mathématiques de Jussieu Université Pierre et Marie Curie Case 247, 4 Place Jussieu F-75252 Paris Cedex 05, France
2 Mathématiques Université Bordeaux I F-33405 Talence Cedex, France
@article{10_4064_aa159_1_3,
     author = {Jean-Paul Allouche and Michel Mend\`es France},
     title = {Lacunary formal power series and the {Stern{\textendash}Brocot} sequence},
     journal = {Acta Arithmetica},
     pages = {47--61},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2013},
     doi = {10.4064/aa159-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-3/}
}
TY  - JOUR
AU  - Jean-Paul Allouche
AU  - Michel Mendès France
TI  - Lacunary formal power series and the Stern–Brocot sequence
JO  - Acta Arithmetica
PY  - 2013
SP  - 47
EP  - 61
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-3/
DO  - 10.4064/aa159-1-3
LA  - en
ID  - 10_4064_aa159_1_3
ER  - 
%0 Journal Article
%A Jean-Paul Allouche
%A Michel Mendès France
%T Lacunary formal power series and the Stern–Brocot sequence
%J Acta Arithmetica
%D 2013
%P 47-61
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-3/
%R 10.4064/aa159-1-3
%G en
%F 10_4064_aa159_1_3
Jean-Paul Allouche; Michel Mendès France. Lacunary formal power series and the Stern–Brocot sequence. Acta Arithmetica, Tome 159 (2013) no. 1, pp. 47-61. doi : 10.4064/aa159-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-3/

Cité par Sources :