Congruences for $q^{[p/8]}\ ({\rm mod}\ p)$
Acta Arithmetica, Tome 159 (2013) no. 1, pp. 1-25.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathbb {Z}$ be the set of integers, and let $(m,n)$ be the greatest common divisor of the integers $m$ and $n$. Let $p\equiv 1\kern 4pt ({\rm mod}\kern 4pt 4)$ be a prime, $q\in \mathbb {Z}$, $2\nmid q$ and $p=c^2+d^2=x^2+qy^2$ with $c,d,x,y\in \mathbb {Z}$ and $c\equiv 1\kern 4pt ( {\rm mod}\kern 4pt 4)$. Suppose that $(c,x+d)=1$ or $(d,x+c)$ is a power of $2$. In this paper, by using the quartic reciprocity law, we determine $q^{[p/8]}\kern 4pt ( {\rm mod}\kern 4pt p)$ in terms of $c,d,x$ and $y$, where $[\cdot ]$ is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.
DOI : 10.4064/aa159-1-1
Mots-clés : mathbb set integers greatest common divisor integers equiv kern mod kern prime mathbb nmid y mathbb equiv kern mod kern suppose power paper using quartic reciprocity law determine kern mod kern terms where cdot greatest integer function hence partially solve conjectures posed previous papers

Zhi-Hong Sun 1

1 School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223001, P.R. China
@article{10_4064_aa159_1_1,
     author = {Zhi-Hong Sun},
     title = {Congruences for $q^{[p/8]}\ ({\rm mod}\ p)$},
     journal = {Acta Arithmetica},
     pages = {1--25},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2013},
     doi = {10.4064/aa159-1-1},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-1/}
}
TY  - JOUR
AU  - Zhi-Hong Sun
TI  - Congruences for $q^{[p/8]}\ ({\rm mod}\ p)$
JO  - Acta Arithmetica
PY  - 2013
SP  - 1
EP  - 25
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-1/
DO  - 10.4064/aa159-1-1
LA  - fr
ID  - 10_4064_aa159_1_1
ER  - 
%0 Journal Article
%A Zhi-Hong Sun
%T Congruences for $q^{[p/8]}\ ({\rm mod}\ p)$
%J Acta Arithmetica
%D 2013
%P 1-25
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-1/
%R 10.4064/aa159-1-1
%G fr
%F 10_4064_aa159_1_1
Zhi-Hong Sun. Congruences for $q^{[p/8]}\ ({\rm mod}\ p)$. Acta Arithmetica, Tome 159 (2013) no. 1, pp. 1-25. doi : 10.4064/aa159-1-1. http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-1/

Cité par Sources :