Congruences for $q^{[p/8]}\ ({\rm mod}\ p)$
Acta Arithmetica, Tome 159 (2013) no. 1, pp. 1-25
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathbb {Z}$ be the set of integers, and let $(m,n)$ be the greatest common divisor of the integers $m$ and $n$. Let $p\equiv 1\kern 4pt ({\rm mod}\kern 4pt 4)$ be a prime, $q\in \mathbb {Z}$, $2\nmid q$ and $p=c^2+d^2=x^2+qy^2$ with $c,d,x,y\in \mathbb {Z}$ and $c\equiv 1\kern 4pt ( {\rm mod}\kern 4pt 4)$. Suppose that $(c,x+d)=1$ or $(d,x+c)$ is a power of $2$. In this paper, by using the quartic reciprocity law, we determine $q^{[p/8]}\kern 4pt ( {\rm mod}\kern 4pt p)$ in terms of $c,d,x$ and $y$, where $[\cdot ]$ is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.
Mots-clés :
mathbb set integers greatest common divisor integers equiv kern mod kern prime mathbb nmid y mathbb equiv kern mod kern suppose power paper using quartic reciprocity law determine kern mod kern terms where cdot greatest integer function hence partially solve conjectures posed previous papers
Affiliations des auteurs :
Zhi-Hong Sun 1
@article{10_4064_aa159_1_1,
author = {Zhi-Hong Sun},
title = {Congruences for $q^{[p/8]}\ ({\rm mod}\ p)$},
journal = {Acta Arithmetica},
pages = {1--25},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {2013},
doi = {10.4064/aa159-1-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa159-1-1/}
}
Zhi-Hong Sun. Congruences for $q^{[p/8]}\ ({\rm mod}\ p)$. Acta Arithmetica, Tome 159 (2013) no. 1, pp. 1-25. doi: 10.4064/aa159-1-1
Cité par Sources :