$K$-finite Whittaker functions are of finite order one
Acta Arithmetica, Tome 158 (2013) no. 4, pp. 359-401.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a finite order one type estimate for the Whittaker function attached to a $K$-finite section of a principle series representation of a real or complex Chevalley group. Effective computations are made using convexity in $\mathbb {C}^n$, following the original paper of Jacquet. As an application, we give a simplified proof of the known result of the boundedness in vertical strips of certain automorphic $L$-functions, using a result of Müller.
DOI : 10.4064/aa158-4-4
Keywords: prove finite order type estimate whittaker function attached k finite section principle series representation real complex chevalley group effective computations made using convexity mathbb following original paper jacquet application simplified proof known result boundedness vertical strips certain automorphic l functions using result ller

Mark McKee 1

1
@article{10_4064_aa158_4_4,
     author = {Mark McKee},
     title = {$K$-finite {Whittaker} functions are of finite order one},
     journal = {Acta Arithmetica},
     pages = {359--401},
     publisher = {mathdoc},
     volume = {158},
     number = {4},
     year = {2013},
     doi = {10.4064/aa158-4-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-4/}
}
TY  - JOUR
AU  - Mark McKee
TI  - $K$-finite Whittaker functions are of finite order one
JO  - Acta Arithmetica
PY  - 2013
SP  - 359
EP  - 401
VL  - 158
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-4/
DO  - 10.4064/aa158-4-4
LA  - en
ID  - 10_4064_aa158_4_4
ER  - 
%0 Journal Article
%A Mark McKee
%T $K$-finite Whittaker functions are of finite order one
%J Acta Arithmetica
%D 2013
%P 359-401
%V 158
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-4/
%R 10.4064/aa158-4-4
%G en
%F 10_4064_aa158_4_4
Mark McKee. $K$-finite Whittaker functions are of finite order one. Acta Arithmetica, Tome 158 (2013) no. 4, pp. 359-401. doi : 10.4064/aa158-4-4. http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-4/

Cité par Sources :