Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Henri Faure 1 ; Friedrich Pillichshammer 2
@article{10_4064_aa158_4_2, author = {Henri Faure and Friedrich Pillichshammer}, title = {A generalization of {NUT} digital $(0,1)$-sequences and best possible lower bounds for star discrepancy}, journal = {Acta Arithmetica}, pages = {321--340}, publisher = {mathdoc}, volume = {158}, number = {4}, year = {2013}, doi = {10.4064/aa158-4-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-2/} }
TY - JOUR AU - Henri Faure AU - Friedrich Pillichshammer TI - A generalization of NUT digital $(0,1)$-sequences and best possible lower bounds for star discrepancy JO - Acta Arithmetica PY - 2013 SP - 321 EP - 340 VL - 158 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-2/ DO - 10.4064/aa158-4-2 LA - en ID - 10_4064_aa158_4_2 ER -
%0 Journal Article %A Henri Faure %A Friedrich Pillichshammer %T A generalization of NUT digital $(0,1)$-sequences and best possible lower bounds for star discrepancy %J Acta Arithmetica %D 2013 %P 321-340 %V 158 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-2/ %R 10.4064/aa158-4-2 %G en %F 10_4064_aa158_4_2
Henri Faure; Friedrich Pillichshammer. A generalization of NUT digital $(0,1)$-sequences and best possible lower bounds for star discrepancy. Acta Arithmetica, Tome 158 (2013) no. 4, pp. 321-340. doi : 10.4064/aa158-4-2. http://geodesic.mathdoc.fr/articles/10.4064/aa158-4-2/
Cité par Sources :