Bounds on the radius of the $p$-adic Mandelbrot set
Acta Arithmetica, Tome 158 (2013) no. 3, pp. 253-269.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f(z) = z^d + a_{d-1}z^{d-1} + \dots + a_1z \in \mathbb {C}_p[z]$ be a degree $d$ polynomial. We say $f$ is post-critically bounded, or PCB, if all of its critical points have bounded orbit under iteration of $f$. It is known that if $p\geq d$ and $f$ is PCB, then all critical points of $f$ have $p$-adic absolute value less than or equal to 1. We give a similar result for $\frac 12d \leq p d $. We also explore a one-parameter family of cubic polynomials over $\mathbb {Q}_2$ to illustrate that the $p$-adic Mandelbrot set can be quite complicated when $p d$, in contrast with the simple and well-understood $p \geq d$ case.
DOI : 10.4064/aa158-3-5
Keywords: d d dots mathbb degree polynomial say post critically bounded pcb its critical points have bounded orbit under iteration known geq pcb critical points have p adic absolute value equal similar result frac leq explore one parameter family cubic polynomials mathbb illustrate p adic mandelbrot set quite complicated contrast simple well understood geq

Jacqueline Anderson 1

1 Mathematics Department Box 1917 Brown University Providence, RI 02912, U.S.A.
@article{10_4064_aa158_3_5,
     author = {Jacqueline Anderson},
     title = {Bounds on the radius of the $p$-adic {Mandelbrot} set},
     journal = {Acta Arithmetica},
     pages = {253--269},
     publisher = {mathdoc},
     volume = {158},
     number = {3},
     year = {2013},
     doi = {10.4064/aa158-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-5/}
}
TY  - JOUR
AU  - Jacqueline Anderson
TI  - Bounds on the radius of the $p$-adic Mandelbrot set
JO  - Acta Arithmetica
PY  - 2013
SP  - 253
EP  - 269
VL  - 158
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-5/
DO  - 10.4064/aa158-3-5
LA  - en
ID  - 10_4064_aa158_3_5
ER  - 
%0 Journal Article
%A Jacqueline Anderson
%T Bounds on the radius of the $p$-adic Mandelbrot set
%J Acta Arithmetica
%D 2013
%P 253-269
%V 158
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-5/
%R 10.4064/aa158-3-5
%G en
%F 10_4064_aa158_3_5
Jacqueline Anderson. Bounds on the radius of the $p$-adic Mandelbrot set. Acta Arithmetica, Tome 158 (2013) no. 3, pp. 253-269. doi : 10.4064/aa158-3-5. http://geodesic.mathdoc.fr/articles/10.4064/aa158-3-5/

Cité par Sources :