Horizontal sections of connections on curves and transcendence
Acta Arithmetica, Tome 158 (2013) no. 2, pp. 99-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be a number field, $X$ be a smooth projective curve over it and $D$ be a reduced divisor on $X$. Let $(E,\nabla)$ be a vector bundle with connection having meromorphic singularities on $D$. Let $p_1,\dots,p_s\in X(K)$ and $X^o:=\overline X\setminus\{D,p_1,\dots, p_s\}$ (the $p_j$'s may be in the support of $D$). Using tools from Nevanlinna theory and formal geometry, we give the definition of $E$-section of arithmetic type of the vector bundle $E$ with respect to the points $p_j$; this is the natural generalization of the notion of $E$-function defined in Siegel–Shidlovskiĭ theory. We prove that the value of an $E$-section of arithmetic type at an algebraic point different from the $p_j$'s has maximal transcendence degree. The Siegel–Shidlovskiĭ theorem is a special case of our theorem proved. We give two applications of the theorem.
DOI : 10.4064/aa158-2-1
Keywords: number field smooth projective curve reduced divisor nabla vector bundle connection having meromorphic singularities dots overline setminus dots may support using tools nevanlinna theory formal geometry definition e section arithmetic type vector bundle respect points natural generalization notion e function defined siegel shidlovski theory prove value e section arithmetic type algebraic point different has maximal transcendence degree siegel shidlovski theorem special theorem proved applications theorem

C. Gasbarri 1

1 Université de Strasbourg IRMA 7 rue René Descartes 67084 Strasbourg, France
@article{10_4064_aa158_2_1,
     author = {C. Gasbarri},
     title = {Horizontal sections of connections on curves and transcendence},
     journal = {Acta Arithmetica},
     pages = {99--128},
     publisher = {mathdoc},
     volume = {158},
     number = {2},
     year = {2013},
     doi = {10.4064/aa158-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-2-1/}
}
TY  - JOUR
AU  - C. Gasbarri
TI  - Horizontal sections of connections on curves and transcendence
JO  - Acta Arithmetica
PY  - 2013
SP  - 99
EP  - 128
VL  - 158
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-2-1/
DO  - 10.4064/aa158-2-1
LA  - en
ID  - 10_4064_aa158_2_1
ER  - 
%0 Journal Article
%A C. Gasbarri
%T Horizontal sections of connections on curves and transcendence
%J Acta Arithmetica
%D 2013
%P 99-128
%V 158
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-2-1/
%R 10.4064/aa158-2-1
%G en
%F 10_4064_aa158_2_1
C. Gasbarri. Horizontal sections of connections on curves and transcendence. Acta Arithmetica, Tome 158 (2013) no. 2, pp. 99-128. doi : 10.4064/aa158-2-1. http://geodesic.mathdoc.fr/articles/10.4064/aa158-2-1/

Cité par Sources :