Quadratic forms and a product-to-sum formula
Acta Arithmetica, Tome 158 (2013) no. 1, pp. 79-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $q \in \mathbb C$ satisfy $|q|1$. If $f(q)=\sum_{n=0}^{\infty} f_n q^n$ we write $[f(q)]_n=f_n$.
We prove a general product-to-sum formula which includes known formulae such as
$$
\Bigl[q\prod_{k=1}^{\infty}(1-q^{2k})^3(1-q^{6k})^3 \Bigr]_n
=\sum_{\textstyle{(x_1,x_2)\in \mathbb Z^2\atop
x_1^2+3x_2^2=n}}\frac12(x_1^2-3x_2^2)
$$
and
\[
\Bigl[q\prod_{k=1}^{\infty}(1-q^{4k})^6 \Bigr]_n=\sum_{\textstyle{(x_1,x_2)\in \mathbb Z^2\atop x_1^2+4x_2^2=n}}\frac12(x_1^2-4x_2^2).
\]
Keywords:
mathbb satisfy sum infty n write prove general product to sum formula which includes known formulae bigl prod infty q q bigr sum textstyle mathbb atop frac bigl prod infty q bigr sum textstyle mathbb atop frac
Affiliations des auteurs :
Kenneth S. Williams 1
@article{10_4064_aa158_1_5,
author = {Kenneth S. Williams},
title = {Quadratic forms and a product-to-sum formula},
journal = {Acta Arithmetica},
pages = {79--97},
publisher = {mathdoc},
volume = {158},
number = {1},
year = {2013},
doi = {10.4064/aa158-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-5/}
}
Kenneth S. Williams. Quadratic forms and a product-to-sum formula. Acta Arithmetica, Tome 158 (2013) no. 1, pp. 79-97. doi: 10.4064/aa158-1-5
Cité par Sources :