Quadratic forms and a product-to-sum formula
Acta Arithmetica, Tome 158 (2013) no. 1, pp. 79-97.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $q \in \mathbb C$ satisfy $|q|1$. If $f(q)=\sum_{n=0}^{\infty} f_n q^n$ we write $[f(q)]_n=f_n$. We prove a general product-to-sum formula which includes known formulae such as $$ \Bigl[q\prod_{k=1}^{\infty}(1-q^{2k})^3(1-q^{6k})^3 \Bigr]_n =\sum_{\textstyle{(x_1,x_2)\in \mathbb Z^2\atop x_1^2+3x_2^2=n}}\frac12(x_1^2-3x_2^2) $$ and \[ \Bigl[q\prod_{k=1}^{\infty}(1-q^{4k})^6 \Bigr]_n=\sum_{\textstyle{(x_1,x_2)\in \mathbb Z^2\atop x_1^2+4x_2^2=n}}\frac12(x_1^2-4x_2^2). \]
DOI : 10.4064/aa158-1-5
Keywords: mathbb satisfy sum infty n write prove general product to sum formula which includes known formulae bigl prod infty q q bigr sum textstyle mathbb atop frac bigl prod infty q bigr sum textstyle mathbb atop frac

Kenneth S. Williams 1

1 Centre for Research in Algebra and Number Theory School of Mathematics and Statistics Carleton University Ottawa, Ontario, Canada K1S 5B6
@article{10_4064_aa158_1_5,
     author = {Kenneth S. Williams},
     title = {Quadratic forms and a product-to-sum formula},
     journal = {Acta Arithmetica},
     pages = {79--97},
     publisher = {mathdoc},
     volume = {158},
     number = {1},
     year = {2013},
     doi = {10.4064/aa158-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-5/}
}
TY  - JOUR
AU  - Kenneth S. Williams
TI  - Quadratic forms and a product-to-sum formula
JO  - Acta Arithmetica
PY  - 2013
SP  - 79
EP  - 97
VL  - 158
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-5/
DO  - 10.4064/aa158-1-5
LA  - en
ID  - 10_4064_aa158_1_5
ER  - 
%0 Journal Article
%A Kenneth S. Williams
%T Quadratic forms and a product-to-sum formula
%J Acta Arithmetica
%D 2013
%P 79-97
%V 158
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-5/
%R 10.4064/aa158-1-5
%G en
%F 10_4064_aa158_1_5
Kenneth S. Williams. Quadratic forms and a product-to-sum formula. Acta Arithmetica, Tome 158 (2013) no. 1, pp. 79-97. doi : 10.4064/aa158-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-5/

Cité par Sources :