Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$
Acta Arithmetica, Tome 158 (2013) no. 1, pp. 49-59
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If $E$ is an elliptic curve defined over a quadratic field $K$, and the $j$-invariant of $E$ is not $0$ or $1728$, then $E(\mathbb{Q}^{\mathrm{ab}})$ has infinite rank. If $E$ is an elliptic curve in Legendre form, $y^2 = x(x-1)(x-\lambda)$, where $\mathbb{Q}(\lambda)$ is a cubic field, then $E(K \mathbb{Q}^{\mathrm{ab}})$ has infinite rank. If $\lambda\in K$ has a minimal polynomial $P(x)$ of degree $4$ and
$v^2 = P(u)$ is an elliptic curve of positive rank over $\mathbb{Q}$, we prove that $y^2 = x(x-1)(x-\lambda)$ has infinite rank over $K\mathbb{Q}^{\mathrm{ab}}$.
Keywords:
elliptic curve defined quadratic field j invariant mathbb mathrm has infinite rank elliptic curve legendre form x x lambda where mathbb lambda cubic field mathbb mathrm has infinite rank lambda has minimal polynomial degree elliptic curve positive rank mathbb prove x x lambda has infinite rank mathbb mathrm
Affiliations des auteurs :
Bo-Hae Im 1 ; Michael Larsen 2
@article{10_4064_aa158_1_3,
author = {Bo-Hae Im and Michael Larsen},
title = {Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$},
journal = {Acta Arithmetica},
pages = {49--59},
publisher = {mathdoc},
volume = {158},
number = {1},
year = {2013},
doi = {10.4064/aa158-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-3/}
}
TY - JOUR
AU - Bo-Hae Im
AU - Michael Larsen
TI - Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$
JO - Acta Arithmetica
PY - 2013
SP - 49
EP - 59
VL - 158
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-3/
DO - 10.4064/aa158-1-3
LA - en
ID - 10_4064_aa158_1_3
ER -
Bo-Hae Im; Michael Larsen. Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$. Acta Arithmetica, Tome 158 (2013) no. 1, pp. 49-59. doi: 10.4064/aa158-1-3
Cité par Sources :