Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$
Acta Arithmetica, Tome 158 (2013) no. 1, pp. 49-59.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $E$ is an elliptic curve defined over a quadratic field $K$, and the $j$-invariant of $E$ is not $0$ or $1728$, then $E(\mathbb{Q}^{\mathrm{ab}})$ has infinite rank. If $E$ is an elliptic curve in Legendre form, $y^2 = x(x-1)(x-\lambda)$, where $\mathbb{Q}(\lambda)$ is a cubic field, then $E(K \mathbb{Q}^{\mathrm{ab}})$ has infinite rank. If $\lambda\in K$ has a minimal polynomial $P(x)$ of degree $4$ and $v^2 = P(u)$ is an elliptic curve of positive rank over $\mathbb{Q}$, we prove that $y^2 = x(x-1)(x-\lambda)$ has infinite rank over $K\mathbb{Q}^{\mathrm{ab}}$.
DOI : 10.4064/aa158-1-3
Keywords: elliptic curve defined quadratic field j invariant mathbb mathrm has infinite rank elliptic curve legendre form x x lambda where mathbb lambda cubic field mathbb mathrm has infinite rank lambda has minimal polynomial degree elliptic curve positive rank mathbb prove x x lambda has infinite rank mathbb mathrm

Bo-Hae Im 1 ; Michael Larsen 2

1 Department of Mathematics Chung-Ang University 221 Heukseok-dong, Dongjak-gu Seoul, 156-756, South Korea
2 Department of Mathematics Indiana University Bloomington, IN 47405, U.S.A.
@article{10_4064_aa158_1_3,
     author = {Bo-Hae Im and Michael Larsen},
     title = {Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$},
     journal = {Acta Arithmetica},
     pages = {49--59},
     publisher = {mathdoc},
     volume = {158},
     number = {1},
     year = {2013},
     doi = {10.4064/aa158-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-3/}
}
TY  - JOUR
AU  - Bo-Hae Im
AU  - Michael Larsen
TI  - Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$
JO  - Acta Arithmetica
PY  - 2013
SP  - 49
EP  - 59
VL  - 158
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-3/
DO  - 10.4064/aa158-1-3
LA  - en
ID  - 10_4064_aa158_1_3
ER  - 
%0 Journal Article
%A Bo-Hae Im
%A Michael Larsen
%T Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$
%J Acta Arithmetica
%D 2013
%P 49-59
%V 158
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-3/
%R 10.4064/aa158-1-3
%G en
%F 10_4064_aa158_1_3
Bo-Hae Im; Michael Larsen. Infinite rank of elliptic curves over $\mathbb{Q}^{\mathrm{ab}}$. Acta Arithmetica, Tome 158 (2013) no. 1, pp. 49-59. doi : 10.4064/aa158-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa158-1-3/

Cité par Sources :