On the Brun–Titchmarsh theorem
Acta Arithmetica, Tome 157 (2013) no. 3, pp. 249-296.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Brun–Titchmarsh theorem shows that the number of primes which are less than $x$ and congruent to $a$ modulo $q$ is less than $(C+o(1))x/(\phi(q)\log{x})$ for some value $C$ depending on $\log{x}/\!\log{q}$. Different authors have provided different estimates for $C$ in different ranges for $\log{x}/\!\log{q}$, all of which give $C>2$ when $\log{x}/\log{q}$ is bounded. We show that one can take $C=2$ provided that $\log{x}/\log{q}\ge8$ and $q$ is sufficiently large. Moreover, we also produce a lower bound of size $x/(q^{1/2}\phi(q))$ when $\log{x}/\log{q}\ge 8$ and is bounded. Both of these bounds are essentially best-possible without any improvement on the Siegel zero problem.
DOI : 10.4064/aa157-3-3
Keywords: brun titchmarsh theorem shows number primes which congruent modulo phi log value depending log log different authors have provided different estimates different ranges log log which log log bounded provided log log sufficiently large moreover produce lower bound size phi log log bounded these bounds essentially best possible without improvement siegel zero problem

James Maynard 1

1 Mathematical Institute 24-29 St Giles' Oxford, OX1 3LB, England
@article{10_4064_aa157_3_3,
     author = {James Maynard},
     title = {On the {Brun{\textendash}Titchmarsh} theorem},
     journal = {Acta Arithmetica},
     pages = {249--296},
     publisher = {mathdoc},
     volume = {157},
     number = {3},
     year = {2013},
     doi = {10.4064/aa157-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa157-3-3/}
}
TY  - JOUR
AU  - James Maynard
TI  - On the Brun–Titchmarsh theorem
JO  - Acta Arithmetica
PY  - 2013
SP  - 249
EP  - 296
VL  - 157
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa157-3-3/
DO  - 10.4064/aa157-3-3
LA  - en
ID  - 10_4064_aa157_3_3
ER  - 
%0 Journal Article
%A James Maynard
%T On the Brun–Titchmarsh theorem
%J Acta Arithmetica
%D 2013
%P 249-296
%V 157
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa157-3-3/
%R 10.4064/aa157-3-3
%G en
%F 10_4064_aa157_3_3
James Maynard. On the Brun–Titchmarsh theorem. Acta Arithmetica, Tome 157 (2013) no. 3, pp. 249-296. doi : 10.4064/aa157-3-3. http://geodesic.mathdoc.fr/articles/10.4064/aa157-3-3/

Cité par Sources :