On the equation
$n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$
with $0 i_0 k-1$
Acta Arithmetica, Tome 129 (2007) no. 1, pp. 1-21
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa129_1_1,
author = {N. Saradha and T. N. Shorey},
title = {On the equation
$n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$
with $0< i_0< k-1$},
journal = {Acta Arithmetica},
pages = {1--21},
year = {2007},
volume = {129},
number = {1},
doi = {10.4064/aa129-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/}
}
TY - JOUR AU - N. Saradha AU - T. N. Shorey TI - On the equation $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ with $0< i_0< k-1$ JO - Acta Arithmetica PY - 2007 SP - 1 EP - 21 VL - 129 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/ DO - 10.4064/aa129-1-1 LA - en ID - 10_4064_aa129_1_1 ER -
N. Saradha; T. N. Shorey. On the equation $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ with $0< i_0< k-1$. Acta Arithmetica, Tome 129 (2007) no. 1, pp. 1-21. doi: 10.4064/aa129-1-1
Cité par Sources :