On the equation $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ with $0 i_0 k-1$
Acta Arithmetica, Tome 129 (2007) no. 1, pp. 1-21.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa129-1-1

N. Saradha 1 ; T. N. Shorey 1

1 School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400 005, India
@article{10_4064_aa129_1_1,
     author = {N. Saradha and T. N. Shorey},
     title = {On the equation
 $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ 
 with $0< i_0< k-1$},
     journal = {Acta Arithmetica},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {129},
     number = {1},
     year = {2007},
     doi = {10.4064/aa129-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/}
}
TY  - JOUR
AU  - N. Saradha
AU  - T. N. Shorey
TI  - On the equation
 $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ 
 with $0< i_0< k-1$
JO  - Acta Arithmetica
PY  - 2007
SP  - 1
EP  - 21
VL  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/
DO  - 10.4064/aa129-1-1
LA  - en
ID  - 10_4064_aa129_1_1
ER  - 
%0 Journal Article
%A N. Saradha
%A T. N. Shorey
%T On the equation
 $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ 
 with $0< i_0< k-1$
%J Acta Arithmetica
%D 2007
%P 1-21
%V 129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/
%R 10.4064/aa129-1-1
%G en
%F 10_4064_aa129_1_1
N. Saradha; T. N. Shorey. On the equation
 $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ 
 with $0< i_0< k-1$. Acta Arithmetica, Tome 129 (2007) no. 1, pp. 1-21. doi : 10.4064/aa129-1-1. http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/

Cité par Sources :