Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa129_1_1, author = {N. Saradha and T. N. Shorey}, title = {On the equation $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ with $0< i_0< k-1$}, journal = {Acta Arithmetica}, pages = {1--21}, publisher = {mathdoc}, volume = {129}, number = {1}, year = {2007}, doi = {10.4064/aa129-1-1}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/} }
TY - JOUR AU - N. Saradha AU - T. N. Shorey TI - On the equation $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ with $0< i_0< k-1$ JO - Acta Arithmetica PY - 2007 SP - 1 EP - 21 VL - 129 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/ DO - 10.4064/aa129-1-1 LA - en ID - 10_4064_aa129_1_1 ER -
%0 Journal Article %A N. Saradha %A T. N. Shorey %T On the equation $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ with $0< i_0< k-1$ %J Acta Arithmetica %D 2007 %P 1-21 %V 129 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/ %R 10.4064/aa129-1-1 %G en %F 10_4064_aa129_1_1
N. Saradha; T. N. Shorey. On the equation $n(n+d)\cdots(n+(i_0-1)d)(n+(i_0+1)d)\cdots(n+(k-1)d)=y^l$ with $0< i_0< k-1$. Acta Arithmetica, Tome 129 (2007) no. 1, pp. 1-21. doi : 10.4064/aa129-1-1. http://geodesic.mathdoc.fr/articles/10.4064/aa129-1-1/
Cité par Sources :