A problem of Galambos on Engel expansions
Acta Arithmetica, Tome 92 (2000) no. 4, pp. 383-386.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) $x =1/d₁(x) + 1/(d₁(x)d₂(x)) + ... + 1/(d₁(x)d₂(x)...d_n(x)) + ... $, where ${d_{j}(x), j ≥ 1}$ is a sequence of positive integers satisfying d₁(x) ≥ 2 and $d_{j+1}(x) ≥ d_{j}(x)$ for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) $lim_{n→∞} d_{n}^{1/n}(x) =e. He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. $dim_H{x ∈ (0,1]: (2) fails} = 1$. We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and $dim_{H}$ to denote the Hausdorff dimension.
DOI : 10.4064/aa-92-4-383-386

Jun Wu 1

1
@article{10_4064_aa_92_4_383_386,
     author = {Jun Wu},
     title = {A problem of {Galambos} on {Engel} expansions},
     journal = {Acta Arithmetica},
     pages = {383--386},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2000},
     doi = {10.4064/aa-92-4-383-386},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-92-4-383-386/}
}
TY  - JOUR
AU  - Jun Wu
TI  - A problem of Galambos on Engel expansions
JO  - Acta Arithmetica
PY  - 2000
SP  - 383
EP  - 386
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-92-4-383-386/
DO  - 10.4064/aa-92-4-383-386
LA  - en
ID  - 10_4064_aa_92_4_383_386
ER  - 
%0 Journal Article
%A Jun Wu
%T A problem of Galambos on Engel expansions
%J Acta Arithmetica
%D 2000
%P 383-386
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-92-4-383-386/
%R 10.4064/aa-92-4-383-386
%G en
%F 10_4064_aa_92_4_383_386
Jun Wu. A problem of Galambos on Engel expansions. Acta Arithmetica, Tome 92 (2000) no. 4, pp. 383-386. doi : 10.4064/aa-92-4-383-386. http://geodesic.mathdoc.fr/articles/10.4064/aa-92-4-383-386/

Cité par Sources :