A problem of Galambos on Engel expansions
Acta Arithmetica, Tome 92 (2000) no. 4, pp. 383-386
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) $x =1/d₁(x) + 1/(d₁(x)d₂(x)) + ... + 1/(d₁(x)d₂(x)...d_n(x)) + ... $, where ${d_{j}(x), j ≥ 1}$ is a sequence of positive integers satisfying d₁(x) ≥ 2 and $d_{j+1}(x) ≥ d_{j}(x)$ for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) $lim_{n→∞} d_{n}^{1/n}(x) =e. He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. $dim_H{x ∈ (0,1]: (2) fails} = 1$. We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and $dim_{H}$ to denote the Hausdorff dimension.
@article{10_4064_aa_92_4_383_386,
author = {Jun Wu},
title = {A problem of {Galambos} on {Engel} expansions},
journal = {Acta Arithmetica},
pages = {383--386},
year = {2000},
volume = {92},
number = {4},
doi = {10.4064/aa-92-4-383-386},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-92-4-383-386/}
}
Jun Wu. A problem of Galambos on Engel expansions. Acta Arithmetica, Tome 92 (2000) no. 4, pp. 383-386. doi: 10.4064/aa-92-4-383-386
Cité par Sources :