Growth of the product $∏^n_{j=1} (1-x^{a_j})$
Acta Arithmetica, Tome 86 (1998) no. 2, pp. 155-170.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We estimate the maximum of $∏^n_{j=1} |1 - x^{a_j}|$ on the unit circle where 1 ≤ a₁ ≤ a₂ ≤ ... is a sequence of integers. We show that when $a_j$ is $j^k$ or when $a_j$ is a quadratic in j that takes on positive integer values, the maximum grows as exp(cn), where c is a positive constant. This complements results of Sudler and Wright that show exponential growth when $a_j$ is j.    In contrast we show, under fairly general conditions, that the maximum is less than $2^n/n^r$, where r is an arbitrary positive number. One consequence is that the number of partitions of m with an even number of parts chosen from $a₁,...,a_n$ is asymptotically equal to the number of such partitions with an odd number of parts when $a_i$ satisfies these general conditions.
DOI : 10.4064/aa-86-2-155-170

J. Bell 1 ; P. Borwein 1 ; L. Richmond 1

1
@article{10_4064_aa_86_2_155_170,
     author = {J. Bell and P. Borwein and L. Richmond},
     title = {Growth of the product $\ensuremath{\prod}^n_{j=1} (1-x^{a_j})$},
     journal = {Acta Arithmetica},
     pages = {155--170},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {1998},
     doi = {10.4064/aa-86-2-155-170},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-155-170/}
}
TY  - JOUR
AU  - J. Bell
AU  - P. Borwein
AU  - L. Richmond
TI  - Growth of the product $∏^n_{j=1} (1-x^{a_j})$
JO  - Acta Arithmetica
PY  - 1998
SP  - 155
EP  - 170
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-155-170/
DO  - 10.4064/aa-86-2-155-170
LA  - en
ID  - 10_4064_aa_86_2_155_170
ER  - 
%0 Journal Article
%A J. Bell
%A P. Borwein
%A L. Richmond
%T Growth of the product $∏^n_{j=1} (1-x^{a_j})$
%J Acta Arithmetica
%D 1998
%P 155-170
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-155-170/
%R 10.4064/aa-86-2-155-170
%G en
%F 10_4064_aa_86_2_155_170
J. Bell; P. Borwein; L. Richmond. Growth of the product $∏^n_{j=1} (1-x^{a_j})$. Acta Arithmetica, Tome 86 (1998) no. 2, pp. 155-170. doi : 10.4064/aa-86-2-155-170. http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-155-170/

Cité par Sources :