Growth of the product $∏^n_{j=1} (1-x^{a_j})$
Acta Arithmetica, Tome 86 (1998) no. 2, pp. 155-170
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We estimate the maximum of $∏^n_{j=1} |1 - x^{a_j}|$ on the unit circle where 1 ≤ a₁ ≤ a₂ ≤ ... is a sequence of integers. We show that when $a_j$ is $j^k$ or when $a_j$ is a quadratic in j that takes on positive integer values, the maximum grows as exp(cn), where c is a positive constant. This complements results of Sudler and Wright that show exponential growth when $a_j$ is j. In contrast we show, under fairly general conditions, that the maximum is less than $2^n/n^r$, where r is an arbitrary positive number. One consequence is that the number of partitions of m with an even number of parts chosen from $a₁,...,a_n$ is asymptotically equal to the number of such partitions with an odd number of parts when $a_i$ satisfies these general conditions.
Affiliations des auteurs :
J. Bell 1 ; P. Borwein 1 ; L. Richmond 1
@article{10_4064_aa_86_2_155_170,
author = {J. Bell and P. Borwein and L. Richmond},
title = {Growth of the product $\ensuremath{\prod}^n_{j=1} (1-x^{a_j})$},
journal = {Acta Arithmetica},
pages = {155--170},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {1998},
doi = {10.4064/aa-86-2-155-170},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-155-170/}
}
TY - JOUR
AU - J. Bell
AU - P. Borwein
AU - L. Richmond
TI - Growth of the product $∏^n_{j=1} (1-x^{a_j})$
JO - Acta Arithmetica
PY - 1998
SP - 155
EP - 170
VL - 86
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-155-170/
DO - 10.4064/aa-86-2-155-170
LA - en
ID - 10_4064_aa_86_2_155_170
ER -
J. Bell; P. Borwein; L. Richmond. Growth of the product $∏^n_{j=1} (1-x^{a_j})$. Acta Arithmetica, Tome 86 (1998) no. 2, pp. 155-170. doi: 10.4064/aa-86-2-155-170
Cité par Sources :