A combinatorial approach to partitions with parts in the gaps
Acta Arithmetica, Tome 85 (1998) no. 2, pp. 119-133
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Many links exist between ordinary partitions and partitions with parts in the "gaps". In this paper, we explore combinatorial explanations for some of these links, along with some natural generalizations. In particular, if we let $p^_{k,m}(j,n)$ be the number of partitions of n into j parts where each part is ≡ k (mod m), 1 ≤ k ≤ m, and we let $p*_{k,m}(j,n)$ be the number of partitions of n into j parts where each part is ≡ k (mod m) with parts of size k in the gaps, then $p*_{k,m}(j,n)=p_{k,m}(j,n)$.
@article{10_4064_aa_85_2_119_133,
author = {Dennis Eichhorn},
title = {A combinatorial approach to partitions with parts in the gaps},
journal = {Acta Arithmetica},
pages = {119--133},
publisher = {mathdoc},
volume = {85},
number = {2},
year = {1998},
doi = {10.4064/aa-85-2-119-133},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-85-2-119-133/}
}
TY - JOUR AU - Dennis Eichhorn TI - A combinatorial approach to partitions with parts in the gaps JO - Acta Arithmetica PY - 1998 SP - 119 EP - 133 VL - 85 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-85-2-119-133/ DO - 10.4064/aa-85-2-119-133 LA - en ID - 10_4064_aa_85_2_119_133 ER -
Dennis Eichhorn. A combinatorial approach to partitions with parts in the gaps. Acta Arithmetica, Tome 85 (1998) no. 2, pp. 119-133. doi: 10.4064/aa-85-2-119-133
Cité par Sources :