A combinatorial approach to partitions with parts in the gaps
Acta Arithmetica, Tome 85 (1998) no. 2, pp. 119-133 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Many links exist between ordinary partitions and partitions with parts in the "gaps". In this paper, we explore combinatorial explanations for some of these links, along with some natural generalizations. In particular, if we let $p^_{k,m}(j,n)$ be the number of partitions of n into j parts where each part is ≡ k (mod m), 1 ≤ k ≤ m, and we let $p*_{k,m}(j,n)$ be the number of partitions of n into j parts where each part is ≡ k (mod m) with parts of size k in the gaps, then $p*_{k,m}(j,n)=p_{k,m}(j,n)$.
DOI : 10.4064/aa-85-2-119-133

Dennis Eichhorn 1

1
@article{10_4064_aa_85_2_119_133,
     author = {Dennis Eichhorn},
     title = {A combinatorial approach to partitions with parts in the gaps},
     journal = {Acta Arithmetica},
     pages = {119--133},
     year = {1998},
     volume = {85},
     number = {2},
     doi = {10.4064/aa-85-2-119-133},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-85-2-119-133/}
}
TY  - JOUR
AU  - Dennis Eichhorn
TI  - A combinatorial approach to partitions with parts in the gaps
JO  - Acta Arithmetica
PY  - 1998
SP  - 119
EP  - 133
VL  - 85
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-85-2-119-133/
DO  - 10.4064/aa-85-2-119-133
LA  - en
ID  - 10_4064_aa_85_2_119_133
ER  - 
%0 Journal Article
%A Dennis Eichhorn
%T A combinatorial approach to partitions with parts in the gaps
%J Acta Arithmetica
%D 1998
%P 119-133
%V 85
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-85-2-119-133/
%R 10.4064/aa-85-2-119-133
%G en
%F 10_4064_aa_85_2_119_133
Dennis Eichhorn. A combinatorial approach to partitions with parts in the gaps. Acta Arithmetica, Tome 85 (1998) no. 2, pp. 119-133. doi: 10.4064/aa-85-2-119-133

Cité par Sources :