Length of continued fractions in principal quadratic fields
Acta Arithmetica, Tome 85 (1998) no. 1, pp. 35-49
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let d ≥ 2 be a square-free integer and for all n ≥ 0, let $l((√d)^{2n+1})$ be the length of the continued fraction expansion of $(√d)^{2n+1}$. If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that $C₁(√d)^{2n+1} ≥ l((√d)^{2n+1}) ≥ C₂(√d)^{2n+1}$ for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].
@article{10_4064_aa_85_1_35_49,
author = {Guillaume Grisel},
title = {Length of continued fractions in principal quadratic fields},
journal = {Acta Arithmetica},
pages = {35--49},
publisher = {mathdoc},
volume = {85},
number = {1},
year = {1998},
doi = {10.4064/aa-85-1-35-49},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-85-1-35-49/}
}
TY - JOUR AU - Guillaume Grisel TI - Length of continued fractions in principal quadratic fields JO - Acta Arithmetica PY - 1998 SP - 35 EP - 49 VL - 85 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-85-1-35-49/ DO - 10.4064/aa-85-1-35-49 LA - en ID - 10_4064_aa_85_1_35_49 ER -
Guillaume Grisel. Length of continued fractions in principal quadratic fields. Acta Arithmetica, Tome 85 (1998) no. 1, pp. 35-49. doi: 10.4064/aa-85-1-35-49
Cité par Sources :