Length of continued fractions in principal quadratic fields
Acta Arithmetica, Tome 85 (1998) no. 1, pp. 35-49.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let d ≥ 2 be a square-free integer and for all n ≥ 0, let $l((√d)^{2n+1})$ be the length of the continued fraction expansion of $(√d)^{2n+1}$. If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that $C₁(√d)^{2n+1} ≥ l((√d)^{2n+1}) ≥ C₂(√d)^{2n+1}$ for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].
DOI : 10.4064/aa-85-1-35-49

Guillaume Grisel 1

1
@article{10_4064_aa_85_1_35_49,
     author = {Guillaume Grisel},
     title = {Length of continued fractions in principal quadratic fields},
     journal = {Acta Arithmetica},
     pages = {35--49},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {1998},
     doi = {10.4064/aa-85-1-35-49},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-85-1-35-49/}
}
TY  - JOUR
AU  - Guillaume Grisel
TI  - Length of continued fractions in principal quadratic fields
JO  - Acta Arithmetica
PY  - 1998
SP  - 35
EP  - 49
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-85-1-35-49/
DO  - 10.4064/aa-85-1-35-49
LA  - en
ID  - 10_4064_aa_85_1_35_49
ER  - 
%0 Journal Article
%A Guillaume Grisel
%T Length of continued fractions in principal quadratic fields
%J Acta Arithmetica
%D 1998
%P 35-49
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-85-1-35-49/
%R 10.4064/aa-85-1-35-49
%G en
%F 10_4064_aa_85_1_35_49
Guillaume Grisel. Length of continued fractions in principal quadratic fields. Acta Arithmetica, Tome 85 (1998) no. 1, pp. 35-49. doi : 10.4064/aa-85-1-35-49. http://geodesic.mathdoc.fr/articles/10.4064/aa-85-1-35-49/

Cité par Sources :