On prime factors of integers of the form (ab+1)(bc+1)(ca+1)
Acta Arithmetica, Tome 79 (1997) no. 2, pp. 163-171.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Introduction. For any integer n > 1 let P(n) denote the greatest prime factor of n. Győry, Sárközy and Stewart [5] conjectured that if a, b and c are pairwise distinct positive integers then (1) P((ab+1)(bc+1)(ca+1)) tends to infinity as max(a,b,c) → ∞. In this paper we confirm this conjecture in the special case when at least one of the numbers a, b, c, a/b, b/c, c/a has bounded prime factors. We prove our result in a quantitative form by showing that if
DOI : 10.4064/aa-79-2-163-171

K. Győry 1 ; A. Sárközy 1

1
@article{10_4064_aa_79_2_163_171,
     author = {K. Gy\H{o}ry and A. S\'ark\"ozy},
     title = {On prime factors of integers of the form (ab+1)(bc+1)(ca+1)},
     journal = {Acta Arithmetica},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {1997},
     doi = {10.4064/aa-79-2-163-171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-79-2-163-171/}
}
TY  - JOUR
AU  - K. Győry
AU  - A. Sárközy
TI  - On prime factors of integers of the form (ab+1)(bc+1)(ca+1)
JO  - Acta Arithmetica
PY  - 1997
SP  - 163
EP  - 171
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-79-2-163-171/
DO  - 10.4064/aa-79-2-163-171
LA  - en
ID  - 10_4064_aa_79_2_163_171
ER  - 
%0 Journal Article
%A K. Győry
%A A. Sárközy
%T On prime factors of integers of the form (ab+1)(bc+1)(ca+1)
%J Acta Arithmetica
%D 1997
%P 163-171
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-79-2-163-171/
%R 10.4064/aa-79-2-163-171
%G en
%F 10_4064_aa_79_2_163_171
K. Győry; A. Sárközy. On prime factors of integers of the form (ab+1)(bc+1)(ca+1). Acta Arithmetica, Tome 79 (1997) no. 2, pp. 163-171. doi : 10.4064/aa-79-2-163-171. http://geodesic.mathdoc.fr/articles/10.4064/aa-79-2-163-171/

Cité par Sources :