On prime factors of integers of the form (ab+1)(bc+1)(ca+1)
Acta Arithmetica, Tome 79 (1997) no. 2, pp. 163-171
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
1. Introduction. For any integer n > 1 let P(n) denote the greatest prime factor of n. Győry, Sárközy and Stewart [5] conjectured that if a, b and c are pairwise distinct positive integers then (1) P((ab+1)(bc+1)(ca+1)) tends to infinity as max(a,b,c) → ∞. In this paper we confirm this conjecture in the special case when at least one of the numbers a, b, c, a/b, b/c, c/a has bounded prime factors. We prove our result in a quantitative form by showing that if
@article{10_4064_aa_79_2_163_171,
author = {K. Gy\H{o}ry and A. S\'ark\"ozy},
title = {On prime factors of integers of the form (ab+1)(bc+1)(ca+1)},
journal = {Acta Arithmetica},
pages = {163--171},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {1997},
doi = {10.4064/aa-79-2-163-171},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-79-2-163-171/}
}
TY - JOUR AU - K. Győry AU - A. Sárközy TI - On prime factors of integers of the form (ab+1)(bc+1)(ca+1) JO - Acta Arithmetica PY - 1997 SP - 163 EP - 171 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-79-2-163-171/ DO - 10.4064/aa-79-2-163-171 LA - en ID - 10_4064_aa_79_2_163_171 ER -
K. Győry; A. Sárközy. On prime factors of integers of the form (ab+1)(bc+1)(ca+1). Acta Arithmetica, Tome 79 (1997) no. 2, pp. 163-171. doi: 10.4064/aa-79-2-163-171
Cité par Sources :