On the number of abelian groups of a given order (supplement)
Acta Arithmetica, Tome 64 (1993) no. 3, pp. 285-296.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Introduction. The aim of this paper is to supply a still better result for the problem considered in [2]. Let A(x) denote the number of distinct abelian groups (up to isomorphism) of orders not exceeding x. We shall prove Theorem 1. For any ε > 0, $A(x) = C₁x + C₂x^{1/2} + C₃x^{1/3} + O(x^{50/199+ε})$, where C₁, C₂ and C₃ are constants given on page 261 of [2]. Note that 50/199=0.25125..., thus improving our previous exponent 40/159=0.25157... obtained in [2]. To prove Theorem 1, we shall proceed along the line of approach presented in [2]. The new tool here is an improved version of a result about enumerating certain lattice points due to E. Fouvry and H. Iwaniec (Proposition 2 of [1], which was listed as Lemma 6 in [2]).
DOI : 10.4064/aa-64-3-285-296

Hong-Quan Liu 1

1
@article{10_4064_aa_64_3_285_296,
     author = {Hong-Quan Liu},
     title = {On the number of abelian groups of a given order (supplement)},
     journal = {Acta Arithmetica},
     pages = {285--296},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1993},
     doi = {10.4064/aa-64-3-285-296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-64-3-285-296/}
}
TY  - JOUR
AU  - Hong-Quan Liu
TI  - On the number of abelian groups of a given order (supplement)
JO  - Acta Arithmetica
PY  - 1993
SP  - 285
EP  - 296
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-64-3-285-296/
DO  - 10.4064/aa-64-3-285-296
LA  - en
ID  - 10_4064_aa_64_3_285_296
ER  - 
%0 Journal Article
%A Hong-Quan Liu
%T On the number of abelian groups of a given order (supplement)
%J Acta Arithmetica
%D 1993
%P 285-296
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-64-3-285-296/
%R 10.4064/aa-64-3-285-296
%G en
%F 10_4064_aa_64_3_285_296
Hong-Quan Liu. On the number of abelian groups of a given order (supplement). Acta Arithmetica, Tome 64 (1993) no. 3, pp. 285-296. doi : 10.4064/aa-64-3-285-296. http://geodesic.mathdoc.fr/articles/10.4064/aa-64-3-285-296/

Cité par Sources :