On $B_{2k}$-sequences
Acta Arithmetica, Tome 63 (1993) no. 4, pp. 367-371.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Introduction. An old conjecture of P. Erdős repeated many times with a prize offer states that the counting function A(n) of a $B_r$-sequence A satisfies $lim inf_{n→ ∞} (A(n)/(n^{1/r}))=0$. The conjecture was proved for r=2 by P. Erdős himself (see [5]) and in the cases r=4 and r=6 by J. C. M. Nash in [4] and by Xing-De Jia in [2] respectively. A very interesting proof of the conjecture in the case of all even r=2k by Xing-De Jia is to appear in the Journal of Number Theory [3]. Here we present a different, very short proof of Erdős' hypothesis for all even r=2k which we developped independently of Jia's version.
DOI : 10.4064/aa-63-4-367-371

Martin Helm 1

1
@article{10_4064_aa_63_4_367_371,
     author = {Martin Helm},
     title = {On $B_{2k}$-sequences},
     journal = {Acta Arithmetica},
     pages = {367--371},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {1993},
     doi = {10.4064/aa-63-4-367-371},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-63-4-367-371/}
}
TY  - JOUR
AU  - Martin Helm
TI  - On $B_{2k}$-sequences
JO  - Acta Arithmetica
PY  - 1993
SP  - 367
EP  - 371
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-63-4-367-371/
DO  - 10.4064/aa-63-4-367-371
LA  - en
ID  - 10_4064_aa_63_4_367_371
ER  - 
%0 Journal Article
%A Martin Helm
%T On $B_{2k}$-sequences
%J Acta Arithmetica
%D 1993
%P 367-371
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-63-4-367-371/
%R 10.4064/aa-63-4-367-371
%G en
%F 10_4064_aa_63_4_367_371
Martin Helm. On $B_{2k}$-sequences. Acta Arithmetica, Tome 63 (1993) no. 4, pp. 367-371. doi : 10.4064/aa-63-4-367-371. http://geodesic.mathdoc.fr/articles/10.4064/aa-63-4-367-371/

Cité par Sources :