Arithmetic progressions in sumsets
Acta Arithmetica, Tome 60 (1991) no. 2, pp. 191-202.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Introduction. Let A,B ⊂ [1,N] be sets of integers, |A|=|B|=cN. Bourgain [2] proved that A+B always contains an arithmetic progression of length $exp(logN)^{1/3-ε}$. Our aim is to show that this is not very far from the best possible. Theorem 1. Let ε be a positive number. For every prime p > p₀(ε) there is a symmetric set A of residues mod p such that |A| > (1/2-ε)p and A + A contains no arithmetic progression of length (1.1)} $exp(logp)^{2/3+ε}$. A set of residues can be used to get a set of integers in an obvious way. Observe that the 1/2 in the theorem is optimal: if |A|>p/2, then A+A contains every residue. Acknowledgement. I profited much from discussions with E. Szemerédi; he directed my attention to this problem and to Bourgain's paper.
DOI : 10.4064/aa-60-2-191-202

Imre Ruzsa 1

1
@article{10_4064_aa_60_2_191_202,
     author = {Imre Ruzsa},
     title = {Arithmetic progressions in sumsets},
     journal = {Acta Arithmetica},
     pages = {191--202},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1991},
     doi = {10.4064/aa-60-2-191-202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-191-202/}
}
TY  - JOUR
AU  - Imre Ruzsa
TI  - Arithmetic progressions in sumsets
JO  - Acta Arithmetica
PY  - 1991
SP  - 191
EP  - 202
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-191-202/
DO  - 10.4064/aa-60-2-191-202
LA  - en
ID  - 10_4064_aa_60_2_191_202
ER  - 
%0 Journal Article
%A Imre Ruzsa
%T Arithmetic progressions in sumsets
%J Acta Arithmetica
%D 1991
%P 191-202
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-191-202/
%R 10.4064/aa-60-2-191-202
%G en
%F 10_4064_aa_60_2_191_202
Imre Ruzsa. Arithmetic progressions in sumsets. Acta Arithmetica, Tome 60 (1991) no. 2, pp. 191-202. doi : 10.4064/aa-60-2-191-202. http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-191-202/

Cité par Sources :