Lorentzian geometry in the large
Banach Center Publications, Tome 41 (1997) no. 1, pp. 11-20.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Lorentzian geometry in the large has certain similarities and certain fundamental differences from Riemannian geometry in the large. The Morse index theory for timelike geodesics is quite similar to the corresponding theory for Riemannian manifolds. However, results on completeness for Lorentzian manifolds are quite different from the corresponding results for positive definite manifolds. A generalization of global hyperbolicity known as pseudoconvexity is described. It has important implications for geodesic structures.
DOI : 10.4064/-41-1-11-20

John Beem 1

1
@article{10_4064__41_1_11_20,
     author = {John Beem},
     title = {Lorentzian geometry in the large},
     journal = {Banach Center Publications},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1997},
     doi = {10.4064/-41-1-11-20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-41-1-11-20/}
}
TY  - JOUR
AU  - John Beem
TI  - Lorentzian geometry in the large
JO  - Banach Center Publications
PY  - 1997
SP  - 11
EP  - 20
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-41-1-11-20/
DO  - 10.4064/-41-1-11-20
LA  - en
ID  - 10_4064__41_1_11_20
ER  - 
%0 Journal Article
%A John Beem
%T Lorentzian geometry in the large
%J Banach Center Publications
%D 1997
%P 11-20
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-41-1-11-20/
%R 10.4064/-41-1-11-20
%G en
%F 10_4064__41_1_11_20
John Beem. Lorentzian geometry in the large. Banach Center Publications, Tome 41 (1997) no. 1, pp. 11-20. doi : 10.4064/-41-1-11-20. http://geodesic.mathdoc.fr/articles/10.4064/-41-1-11-20/

Cité par Sources :