Lorentzian geometry in the large
Banach Center Publications, Tome 41 (1997) no. 1, pp. 11-20
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'acte

Lorentzian geometry in the large has certain similarities and certain fundamental differences from Riemannian geometry in the large. The Morse index theory for timelike geodesics is quite similar to the corresponding theory for Riemannian manifolds. However, results on completeness for Lorentzian manifolds are quite different from the corresponding results for positive definite manifolds. A generalization of global hyperbolicity known as pseudoconvexity is described. It has important implications for geodesic structures.
@article{10_4064__41_1_11_20,
     author = {John Beem},
     title = {Lorentzian geometry in the large},
     journal = {Banach Center Publications},
     pages = {11--20},
     year = {1997},
     volume = {41},
     number = {1},
     doi = {10.4064/-41-1-11-20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-41-1-11-20/}
}
TY  - JOUR
AU  - John Beem
TI  - Lorentzian geometry in the large
JO  - Banach Center Publications
PY  - 1997
SP  - 11
EP  - 20
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-41-1-11-20/
DO  - 10.4064/-41-1-11-20
LA  - en
ID  - 10_4064__41_1_11_20
ER  - 
%0 Journal Article
%A John Beem
%T Lorentzian geometry in the large
%J Banach Center Publications
%D 1997
%P 11-20
%V 41
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/-41-1-11-20/
%R 10.4064/-41-1-11-20
%G en
%F 10_4064__41_1_11_20
John Beem. Lorentzian geometry in the large. Banach Center Publications, Tome 41 (1997) no. 1, pp. 11-20. doi: 10.4064/-41-1-11-20

Cité par Sources :