On local motion of a compressible barotropic viscous fluid bounded by a free surface
Banach Center Publications, Tome 27 (1992) no. 2, pp. 511-553
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the motion of a viscous compressible barotropic fluid in ℝ³ bounded by a free surface which is under constant exterior pressure, both with surface tension and without it. In the first case we prove local existence of solutions in anisotropic Hilbert spaces with noninteger derivatives. In the case without surface tension the anisotropic Sobolev spaces with integration exponent p > 3 are used to omit the coefficients which are increasing functions of 1/T, where T is the existence time.
Keywords:
free boundary, compressible barotropic viscous fluid, local existence, anisotropic Sobolev spaces, surface tension
Affiliations des auteurs :
W. Zajączkowski 1
@article{10_4064__27_2_511_553,
author = {W. Zaj\k{a}czkowski},
title = {On local motion of a compressible barotropic viscous fluid bounded by a free surface},
journal = {Banach Center Publications},
pages = {511--553},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1992},
doi = {10.4064/-27-2-511-553},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-2-511-553/}
}
TY - JOUR AU - W. Zajączkowski TI - On local motion of a compressible barotropic viscous fluid bounded by a free surface JO - Banach Center Publications PY - 1992 SP - 511 EP - 553 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/-27-2-511-553/ DO - 10.4064/-27-2-511-553 LA - en ID - 10_4064__27_2_511_553 ER -
%0 Journal Article %A W. Zajączkowski %T On local motion of a compressible barotropic viscous fluid bounded by a free surface %J Banach Center Publications %D 1992 %P 511-553 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/-27-2-511-553/ %R 10.4064/-27-2-511-553 %G en %F 10_4064__27_2_511_553
W. Zajączkowski. On local motion of a compressible barotropic viscous fluid bounded by a free surface. Banach Center Publications, Tome 27 (1992) no. 2, pp. 511-553. doi: 10.4064/-27-2-511-553
Cité par Sources :