Neumann problem for one-dimensional nonlinear thermoelasticity
Banach Center Publications, Tome 27 (1992) no. 2, pp. 457-480
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The global existence theorem of classical solutions for one-dimensional nonlinear thermoelasticity is proved for small and smooth initial data in the case of a bounded reference configuration for a homogeneous medium, considering the Neumann type boundary conditions: traction free and insulated. Moreover, the asymptotic behaviour of solutions is investigated.
Keywords:
classical solutions, Neumann problem, global existence, one-dimensional nonlinear thermoelasticity
Affiliations des auteurs :
Yoshihiro Shibata 1
@article{10_4064__27_2_457_480,
author = {Yoshihiro Shibata},
title = {Neumann problem for one-dimensional nonlinear thermoelasticity},
journal = {Banach Center Publications},
pages = {457--480},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1992},
doi = {10.4064/-27-2-457-480},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-2-457-480/}
}
TY - JOUR AU - Yoshihiro Shibata TI - Neumann problem for one-dimensional nonlinear thermoelasticity JO - Banach Center Publications PY - 1992 SP - 457 EP - 480 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/-27-2-457-480/ DO - 10.4064/-27-2-457-480 LA - en ID - 10_4064__27_2_457_480 ER -
Yoshihiro Shibata. Neumann problem for one-dimensional nonlinear thermoelasticity. Banach Center Publications, Tome 27 (1992) no. 2, pp. 457-480. doi: 10.4064/-27-2-457-480
Cité par Sources :