Wave fronts of solutions of some classes of non-linear partial differential equations
Banach Center Publications, Tome 27 (1992) no. 2, pp. 361-366
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
1. This paper is devoted to the study of wave fronts of solutions of first order symmetric systems of non-linear partial differential equations. A short communication was published in [4]. The microlocal point of view enables us to obtain more precise information concerning the smoothness of solutions of symmetric hyperbolic systems. Our main result is a generalization to the non-linear case of Theorem 1.1 of Ivriĭ [3]. The machinery of paradifferential operators introduced by Bony [1] together with an idea coming from [3], [2] are used.
@article{10_4064__27_2_361_366,
author = {P. Popivanov},
title = {Wave fronts of solutions of some classes of non-linear partial differential equations},
journal = {Banach Center Publications},
pages = {361--366},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {1992},
doi = {10.4064/-27-2-361-366},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-2-361-366/}
}
TY - JOUR AU - P. Popivanov TI - Wave fronts of solutions of some classes of non-linear partial differential equations JO - Banach Center Publications PY - 1992 SP - 361 EP - 366 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/-27-2-361-366/ DO - 10.4064/-27-2-361-366 LA - en ID - 10_4064__27_2_361_366 ER -
%0 Journal Article %A P. Popivanov %T Wave fronts of solutions of some classes of non-linear partial differential equations %J Banach Center Publications %D 1992 %P 361-366 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/-27-2-361-366/ %R 10.4064/-27-2-361-366 %G en %F 10_4064__27_2_361_366
P. Popivanov. Wave fronts of solutions of some classes of non-linear partial differential equations. Banach Center Publications, Tome 27 (1992) no. 2, pp. 361-366. doi: 10.4064/-27-2-361-366
Cité par Sources :