Absolute profinite rigidity and hyperbolic geometry
Annals of mathematics, Tome 192 (2020) no. 3, pp. 679-719

Voir la notice de l'article provenant de la source Annals of Mathematics website

We construct arithmetic Kleinian groups that are profinitely rigid in the absolute sense: each is distinguished from all other finitely generated, residually finite groups by its set of finite quotients. The Bianchi group $\mathrm {PSL}(2,\mathbb {Z}[\omega ])$ with $\omega ^2+\omega +1=0$ is rigid in this sense. Other examples include the non-uniform lattice of minimal co-volume in ${\rm {PSL}}(2,\mathbb {C})$ and the fundamental group of the Weeks manifold (the closed hyperbolic $3$-manifold of minimal volume).

DOI : 10.4007/annals.2020.192.3.1

M. R. Bridson 1 ; D. B. McReynolds 2 ; A. W. Reid 3 ; R. Spitler 4

1 Mathematical Institute, University of Oxford, Oxford, UK
2 Department of Mathematics, Purdue University, West Lafayette, IN, USA
3 Department of Mathematics, Rice University, Houston, TX, USA
4 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada
@article{10_4007_annals_2020_192_3_1,
     author = {M. R. Bridson and D. B. McReynolds and A. W. Reid and R. Spitler},
     title = {Absolute profinite rigidity and hyperbolic geometry},
     journal = {Annals of mathematics},
     pages = {679--719},
     publisher = {mathdoc},
     volume = {192},
     number = {3},
     year = {2020},
     doi = {10.4007/annals.2020.192.3.1},
     mrnumber = {4172619},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2020.192.3.1/}
}
TY  - JOUR
AU  - M. R. Bridson
AU  - D. B. McReynolds
AU  - A. W. Reid
AU  - R. Spitler
TI  - Absolute profinite rigidity and hyperbolic geometry
JO  - Annals of mathematics
PY  - 2020
SP  - 679
EP  - 719
VL  - 192
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2020.192.3.1/
DO  - 10.4007/annals.2020.192.3.1
LA  - en
ID  - 10_4007_annals_2020_192_3_1
ER  - 
%0 Journal Article
%A M. R. Bridson
%A D. B. McReynolds
%A A. W. Reid
%A R. Spitler
%T Absolute profinite rigidity and hyperbolic geometry
%J Annals of mathematics
%D 2020
%P 679-719
%V 192
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2020.192.3.1/
%R 10.4007/annals.2020.192.3.1
%G en
%F 10_4007_annals_2020_192_3_1
M. R. Bridson; D. B. McReynolds; A. W. Reid; R. Spitler. Absolute profinite rigidity and hyperbolic geometry. Annals of mathematics, Tome 192 (2020) no. 3, pp. 679-719. doi: 10.4007/annals.2020.192.3.1

Cité par Sources :