Voir la notice de l'article provenant de la source Annals of Mathematics website
To any pullback square of ring spectra we associate a new ring spectrum and use it to describe the failure of excision in algebraic $K$-theory. The construction of this new ring spectrum is categorical and hence allows us to determine the failure of excision for any localizing invariant in place of $K$-theory.
Markus Land 1 ; Georg Tamme 1
@article{10_4007_annals_2019_190_3_4, author = {Markus Land and Georg Tamme}, title = {On the $K$-theory of pullbacks}, journal = {Annals of mathematics}, pages = {877--930}, publisher = {mathdoc}, volume = {190}, number = {3}, year = {2019}, doi = {10.4007/annals.2019.190.3.4}, mrnumber = {4024564}, zbl = {07128142}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.3.4/} }
TY - JOUR AU - Markus Land AU - Georg Tamme TI - On the $K$-theory of pullbacks JO - Annals of mathematics PY - 2019 SP - 877 EP - 930 VL - 190 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.3.4/ DO - 10.4007/annals.2019.190.3.4 LA - en ID - 10_4007_annals_2019_190_3_4 ER -
Markus Land; Georg Tamme. On the $K$-theory of pullbacks. Annals of mathematics, Tome 190 (2019) no. 3, pp. 877-930. doi: 10.4007/annals.2019.190.3.4
Cité par Sources :