On the $K$-theory of pullbacks
Annals of mathematics, Tome 190 (2019) no. 3, pp. 877-930

Voir la notice de l'article provenant de la source Annals of Mathematics website

To any pullback square of ring spectra we associate a new ring spectrum and use it to describe the failure of excision in algebraic $K$-theory. The construction of this new ring spectrum is categorical and hence allows us to determine the failure of excision for any localizing invariant in place of $K$-theory.

DOI : 10.4007/annals.2019.190.3.4

Markus Land 1 ; Georg Tamme 1

1 Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany
@article{10_4007_annals_2019_190_3_4,
     author = {Markus Land and Georg Tamme},
     title = {On the $K$-theory of pullbacks},
     journal = {Annals of mathematics},
     pages = {877--930},
     publisher = {mathdoc},
     volume = {190},
     number = {3},
     year = {2019},
     doi = {10.4007/annals.2019.190.3.4},
     mrnumber = {4024564},
     zbl = {07128142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.3.4/}
}
TY  - JOUR
AU  - Markus Land
AU  - Georg Tamme
TI  - On the $K$-theory of pullbacks
JO  - Annals of mathematics
PY  - 2019
SP  - 877
EP  - 930
VL  - 190
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.3.4/
DO  - 10.4007/annals.2019.190.3.4
LA  - en
ID  - 10_4007_annals_2019_190_3_4
ER  - 
%0 Journal Article
%A Markus Land
%A Georg Tamme
%T On the $K$-theory of pullbacks
%J Annals of mathematics
%D 2019
%P 877-930
%V 190
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.3.4/
%R 10.4007/annals.2019.190.3.4
%G en
%F 10_4007_annals_2019_190_3_4
Markus Land; Georg Tamme. On the $K$-theory of pullbacks. Annals of mathematics, Tome 190 (2019) no. 3, pp. 877-930. doi: 10.4007/annals.2019.190.3.4

Cité par Sources :