Voir la notice de l'article provenant de la source Annals of Mathematics website
We establish an asymptotic formula for the number of integer solutions to the Markoff-Hurwitz equation \[ x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2}=ax_{1}x_{2}\cdots x_{n}+k. \] When $n\geq 4$, the previous best result is by Baragar (1998) that gives an exponential rate of growth with exponent $\beta $ that is not in general an integer when $n\geq 4$. We give a new interpretation of this exponent of growth in terms of the unique parameter for which there exists a certain conformal measure on projective space.
Alex Gamburd 1 ; Michael Magee 2 ; Ryan Ronan 3
@article{10_4007_annals_2019_190_3_2, author = {Alex Gamburd and Michael Magee and Ryan Ronan}, title = {An asymptotic formula for integer points on {Markoff-Hurwitz} varieties}, journal = {Annals of mathematics}, pages = {751--809}, publisher = {mathdoc}, volume = {190}, number = {3}, year = {2019}, doi = {10.4007/annals.2019.190.3.2}, mrnumber = {4024562}, zbl = {07134621}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.3.2/} }
TY - JOUR AU - Alex Gamburd AU - Michael Magee AU - Ryan Ronan TI - An asymptotic formula for integer points on Markoff-Hurwitz varieties JO - Annals of mathematics PY - 2019 SP - 751 EP - 809 VL - 190 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.3.2/ DO - 10.4007/annals.2019.190.3.2 LA - en ID - 10_4007_annals_2019_190_3_2 ER -
%0 Journal Article %A Alex Gamburd %A Michael Magee %A Ryan Ronan %T An asymptotic formula for integer points on Markoff-Hurwitz varieties %J Annals of mathematics %D 2019 %P 751-809 %V 190 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.3.2/ %R 10.4007/annals.2019.190.3.2 %G en %F 10_4007_annals_2019_190_3_2
Alex Gamburd; Michael Magee; Ryan Ronan. An asymptotic formula for integer points on Markoff-Hurwitz varieties. Annals of mathematics, Tome 190 (2019) no. 3, pp. 751-809. doi: 10.4007/annals.2019.190.3.2
Cité par Sources :