Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove that $\mathrm {K}$-polystable degenerations of $\mathbb {Q}$-Fano varieties are unique. Furthermore, we show that the moduli stack of $\mathrm {K}$-stable $\mathbb {Q}$-Fano varieties is separated. Together with recently proven boundedness and openness statements, the latter result yields a separated Deligne-Mumford stack parametrizing all uniformly $\mathrm {K}$-stable $\mathbb {Q}$-Fano varieties of fixed dimension and volume. The result also implies that the automorphism group of a $\mathrm {K}$-stable $\mathbb {Q}$-Fano variety is finite.
Harold Blum 1 ; Chenyang Xu 2
@article{10_4007_annals_2019_190_2_4, author = {Harold Blum and Chenyang Xu}, title = {Uniqueness of $\mathrm {K}$-polystable degenerations of {Fano} varieties}, journal = {Annals of mathematics}, pages = {609--656}, publisher = {mathdoc}, volume = {190}, number = {2}, year = {2019}, doi = {10.4007/annals.2019.190.2.4}, mrnumber = {3997130}, zbl = {07107183}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.2.4/} }
TY - JOUR AU - Harold Blum AU - Chenyang Xu TI - Uniqueness of $\mathrm {K}$-polystable degenerations of Fano varieties JO - Annals of mathematics PY - 2019 SP - 609 EP - 656 VL - 190 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.2.4/ DO - 10.4007/annals.2019.190.2.4 LA - en ID - 10_4007_annals_2019_190_2_4 ER -
%0 Journal Article %A Harold Blum %A Chenyang Xu %T Uniqueness of $\mathrm {K}$-polystable degenerations of Fano varieties %J Annals of mathematics %D 2019 %P 609-656 %V 190 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.2.4/ %R 10.4007/annals.2019.190.2.4 %G en %F 10_4007_annals_2019_190_2_4
Harold Blum; Chenyang Xu. Uniqueness of $\mathrm {K}$-polystable degenerations of Fano varieties. Annals of mathematics, Tome 190 (2019) no. 2, pp. 609-656. doi: 10.4007/annals.2019.190.2.4
Cité par Sources :