Ricci flow with surgery on manifolds with positive isotropic curvature
Annals of mathematics, Tome 190 (2019) no. 2, pp. 465-559

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study the Ricci flow for initial metrics with positive isotropic curvature (strictly PIC for short).

DOI : 10.4007/annals.2019.190.2.2

Simon Brendle 1

1 Columbia University, New York, NY
@article{10_4007_annals_2019_190_2_2,
     author = {Simon Brendle},
     title = {Ricci flow with surgery on manifolds with positive isotropic curvature},
     journal = {Annals of mathematics},
     pages = {465--559},
     publisher = {mathdoc},
     volume = {190},
     number = {2},
     year = {2019},
     doi = {10.4007/annals.2019.190.2.2},
     mrnumber = {3997128},
     zbl = {07107181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.2.2/}
}
TY  - JOUR
AU  - Simon Brendle
TI  - Ricci flow with surgery on manifolds with positive isotropic curvature
JO  - Annals of mathematics
PY  - 2019
SP  - 465
EP  - 559
VL  - 190
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.2.2/
DO  - 10.4007/annals.2019.190.2.2
LA  - en
ID  - 10_4007_annals_2019_190_2_2
ER  - 
%0 Journal Article
%A Simon Brendle
%T Ricci flow with surgery on manifolds with positive isotropic curvature
%J Annals of mathematics
%D 2019
%P 465-559
%V 190
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.2.2/
%R 10.4007/annals.2019.190.2.2
%G en
%F 10_4007_annals_2019_190_2_2
Simon Brendle. Ricci flow with surgery on manifolds with positive isotropic curvature. Annals of mathematics, Tome 190 (2019) no. 2, pp. 465-559. doi: 10.4007/annals.2019.190.2.2

Cité par Sources :