Voir la notice de l'article provenant de la source Annals of Mathematics website
In this paper, we study the linear systems $|-mK_X|$ on Fano varieties $X$ with klt singularities. In a given dimension $d$, we prove $|-mK_X|$ is non-empty and contains an element with “good singularities” for some natural number $m$ depending only on $d$; if in addition $X$ is $\epsilon$-lc for some $\epsilon >0$, then we show that we can choose $m$ depending only on $d$ and $\epsilon $ so that $|-mK_X|$ defines a birational map. Further, we prove Shokurov’s conjecture on boundedness of complements, and show that certain classes of Fano varieties form bounded families.
@article{10_4007_annals_2019_190_2_1, author = {Caucher Birkar}, title = {Anti-pluricanonical systems on {Fano} varieties}, journal = {Annals of mathematics}, pages = {345--463}, publisher = {mathdoc}, volume = {190}, number = {2}, year = {2019}, doi = {10.4007/annals.2019.190.2.1}, mrnumber = {3997127}, zbl = {07107180}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.2.1/} }
TY - JOUR AU - Caucher Birkar TI - Anti-pluricanonical systems on Fano varieties JO - Annals of mathematics PY - 2019 SP - 345 EP - 463 VL - 190 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.2.1/ DO - 10.4007/annals.2019.190.2.1 LA - en ID - 10_4007_annals_2019_190_2_1 ER -
Caucher Birkar. Anti-pluricanonical systems on Fano varieties. Annals of mathematics, Tome 190 (2019) no. 2, pp. 345-463. doi: 10.4007/annals.2019.190.2.1
Cité par Sources :