The marked length spectrum of Anosov manifolds
Annals of mathematics, Tome 190 (2019) no. 1, pp. 321-344

Voir la notice de l'article provenant de la source Annals of Mathematics website

In all dimensions, we prove that the marked length spectrum of a Riemannian manifold $(M,g)$ with Anosov geodesic flow and non-positive curvature locally determines the metric in the sense that two close enough metrics with the same marked length spectrum are isometric. In addition, we provide a new stability estimate quantifying how the marked length spectrum controls the distance between the isometry classes of metrics. In dimension $2$ we obtain similar results for general metrics with Anosov geodesic flows. We also solve locally a rigidity conjecture of Croke relating volume and marked length spectrum for the same category of metrics. Finally, by a compactness argument, we show that the set of negatively curved metrics (up to isometry) with the same marked length spectrum and with curvature in a bounded set of $C^\infty$ is finite.

DOI : 10.4007/annals.2019.190.1.6

Colin Guillarmou 1 ; Thibault Lefeuvre 1

1 Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
@article{10_4007_annals_2019_190_1_6,
     author = {Colin Guillarmou and Thibault Lefeuvre},
     title = {The marked length spectrum of {Anosov} manifolds},
     journal = {Annals of mathematics},
     pages = {321--344},
     publisher = {mathdoc},
     volume = {190},
     number = {1},
     year = {2019},
     doi = {10.4007/annals.2019.190.1.6},
     mrnumber = {3990606},
     zbl = {07097501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.1.6/}
}
TY  - JOUR
AU  - Colin Guillarmou
AU  - Thibault Lefeuvre
TI  - The marked length spectrum of Anosov manifolds
JO  - Annals of mathematics
PY  - 2019
SP  - 321
EP  - 344
VL  - 190
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.1.6/
DO  - 10.4007/annals.2019.190.1.6
LA  - en
ID  - 10_4007_annals_2019_190_1_6
ER  - 
%0 Journal Article
%A Colin Guillarmou
%A Thibault Lefeuvre
%T The marked length spectrum of Anosov manifolds
%J Annals of mathematics
%D 2019
%P 321-344
%V 190
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.1.6/
%R 10.4007/annals.2019.190.1.6
%G en
%F 10_4007_annals_2019_190_1_6
Colin Guillarmou; Thibault Lefeuvre. The marked length spectrum of Anosov manifolds. Annals of mathematics, Tome 190 (2019) no. 1, pp. 321-344. doi: 10.4007/annals.2019.190.1.6

Cité par Sources :