Voir la notice de l'article provenant de la source Annals of Mathematics website
Assuming four strongly compact cardinals, it is consistent that all entries in Cichoń’s diagram (apart from $\mathrm {add}(\mathcal {M})$ and $\mathrm {cof}(\mathcal {M})$, whose values are determined by the others) are pairwise different; more specifically,
$\aleph _1 < \mathrm{add}(\mathcal {N})$ $\lt \mathrm{cov}(\mathcal {N}) < \mathfrak {b} < \mathrm{non}(\mathcal {M}) < \mathrm{cov}(\mathcal {M}) < \mathfrak{d} < \mathrm{non}(\mathcal{N}) < \mathrm{cof}(\mathcal{N}) < 2^{\aleph _0}$.
Martin Goldstern 1 ; Jakob Kellner 1 ; Saharon Shelah 2
@article{10_4007_annals_2019_190_1_2, author = {Martin Goldstern and Jakob Kellner and Saharon Shelah}, title = {Cichoń{\textquoteright}s maximum}, journal = {Annals of mathematics}, pages = {113--143}, publisher = {mathdoc}, volume = {190}, number = {1}, year = {2019}, doi = {10.4007/annals.2019.190.1.2}, mrnumber = {3990602}, zbl = {07097497}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.1.2/} }
TY - JOUR AU - Martin Goldstern AU - Jakob Kellner AU - Saharon Shelah TI - Cichoń’s maximum JO - Annals of mathematics PY - 2019 SP - 113 EP - 143 VL - 190 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.1.2/ DO - 10.4007/annals.2019.190.1.2 LA - en ID - 10_4007_annals_2019_190_1_2 ER -
%0 Journal Article %A Martin Goldstern %A Jakob Kellner %A Saharon Shelah %T Cichoń’s maximum %J Annals of mathematics %D 2019 %P 113-143 %V 190 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.190.1.2/ %R 10.4007/annals.2019.190.1.2 %G en %F 10_4007_annals_2019_190_1_2
Martin Goldstern; Jakob Kellner; Saharon Shelah. Cichoń’s maximum. Annals of mathematics, Tome 190 (2019) no. 1, pp. 113-143. doi: 10.4007/annals.2019.190.1.2
Cité par Sources :