On the dimension of Bernoulli convolutions for all transcendental parameters
Annals of mathematics, Tome 189 (2019) no. 3, pp. 1001-1011

Voir la notice de l'article provenant de la source Annals of Mathematics website

The Bernoulli convolution $\nu_\lambda$ with parameter $\lambda\in(0,1)$ is the probability measure supported on $\mathbf{R}$ that is the law of the random variable $\sum\pm\lambda^n$, where the $\pm$ are independent fair coin-tosses. We prove that $\dim\nu_\lambda=1$ for all transcendental $\lambda\in(1/2,1)$.

DOI : 10.4007/annals.2019.189.3.9

Péter P. Varjú 1

1 Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
@article{10_4007_annals_2019_189_3_9,
     author = {P\'eter P. Varj\'u},
     title = {On the dimension of {Bernoulli} convolutions for all transcendental parameters},
     journal = {Annals of mathematics},
     pages = {1001--1011},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2019},
     doi = {10.4007/annals.2019.189.3.9},
     mrnumber = {3961088},
     zbl = {07097495},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.9/}
}
TY  - JOUR
AU  - Péter P. Varjú
TI  - On the dimension of Bernoulli convolutions for all transcendental parameters
JO  - Annals of mathematics
PY  - 2019
SP  - 1001
EP  - 1011
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.9/
DO  - 10.4007/annals.2019.189.3.9
LA  - en
ID  - 10_4007_annals_2019_189_3_9
ER  - 
%0 Journal Article
%A Péter P. Varjú
%T On the dimension of Bernoulli convolutions for all transcendental parameters
%J Annals of mathematics
%D 2019
%P 1001-1011
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.9/
%R 10.4007/annals.2019.189.3.9
%G en
%F 10_4007_annals_2019_189_3_9
Péter P. Varjú. On the dimension of Bernoulli convolutions for all transcendental parameters. Annals of mathematics, Tome 189 (2019) no. 3, pp. 1001-1011. doi: 10.4007/annals.2019.189.3.9

Cité par Sources :