Ax-Schanuel for Shimura varieties
Annals of mathematics, Tome 189 (2019) no. 3, pp. 945-978

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove the Ax-Schanuel theorem for a general (pure) Shimura variety. A basic version of the theorem concerns the transcendence of the uniformization map from a bounded Hermitian symmetric space to a Shimura variety. We then prove a version of the theorem with derivatives in the setting of jet spaces, and finally a version in the setting of differential fields.

DOI : 10.4007/annals.2019.189.3.7

Ngaiming Mok 1 ; Jonathan Pila 2 ; Jacob Tsimerman 3

1 The University of Hong Kong, Pokfulam, Hong Kong
2 Mathematical Institute, University of Oxford, Oxford, United Kingdom
3 University of Toronto Toronto, Ontario, Canada
@article{10_4007_annals_2019_189_3_7,
     author = {Ngaiming Mok and Jonathan Pila and Jacob Tsimerman},
     title = {Ax-Schanuel for {Shimura} varieties},
     journal = {Annals of mathematics},
     pages = {945--978},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2019},
     doi = {10.4007/annals.2019.189.3.7},
     mrnumber = {3961087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.7/}
}
TY  - JOUR
AU  - Ngaiming Mok
AU  - Jonathan Pila
AU  - Jacob Tsimerman
TI  - Ax-Schanuel for Shimura varieties
JO  - Annals of mathematics
PY  - 2019
SP  - 945
EP  - 978
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.7/
DO  - 10.4007/annals.2019.189.3.7
LA  - en
ID  - 10_4007_annals_2019_189_3_7
ER  - 
%0 Journal Article
%A Ngaiming Mok
%A Jonathan Pila
%A Jacob Tsimerman
%T Ax-Schanuel for Shimura varieties
%J Annals of mathematics
%D 2019
%P 945-978
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.7/
%R 10.4007/annals.2019.189.3.7
%G en
%F 10_4007_annals_2019_189_3_7
Ngaiming Mok; Jonathan Pila; Jacob Tsimerman. Ax-Schanuel for Shimura varieties. Annals of mathematics, Tome 189 (2019) no. 3, pp. 945-978. doi: 10.4007/annals.2019.189.3.7

Cité par Sources :