Voir la notice de l'article provenant de la source Annals of Mathematics website
We show that, for $n\geq 3$, $\lim_{t \to 0} e^{it\Delta}f(x) = f(x)$ holds almost everywhere for all $f \in H^s (\mathbb{R}^n)$ provided that $s>\frac{n}{2(n+1)}$. Due to a counterexample by Bourgain, up to the endpoint, this result is sharp and fully resolves a problem raised by Carleson. Our main theorem is a fractal $L^2$ restriction estimate, which also gives improved results on the size of the divergence set of the Schrödinger solutions, the Falconer distance set problem and the spherical average Fourier decay rates of fractal measures. The key ingredients of the proof include multilinear Kakeya estimates, decoupling and induction on scales.
Xiumin Du 1 ; Ruixiang Zhang 2
@article{10_4007_annals_2019_189_3_4, author = {Xiumin Du and Ruixiang Zhang}, title = {Sharp $L^2$ estimates of the {Schr\"odinger} maximal function in higher dimensions}, journal = {Annals of mathematics}, pages = {837--861}, publisher = {mathdoc}, volume = {189}, number = {3}, year = {2019}, doi = {10.4007/annals.2019.189.3.4}, mrnumber = {3961084}, zbl = {07097491}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.4/} }
TY - JOUR AU - Xiumin Du AU - Ruixiang Zhang TI - Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions JO - Annals of mathematics PY - 2019 SP - 837 EP - 861 VL - 189 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.4/ DO - 10.4007/annals.2019.189.3.4 LA - en ID - 10_4007_annals_2019_189_3_4 ER -
%0 Journal Article %A Xiumin Du %A Ruixiang Zhang %T Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions %J Annals of mathematics %D 2019 %P 837-861 %V 189 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.4/ %R 10.4007/annals.2019.189.3.4 %G en %F 10_4007_annals_2019_189_3_4
Xiumin Du; Ruixiang Zhang. Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions. Annals of mathematics, Tome 189 (2019) no. 3, pp. 837-861. doi: 10.4007/annals.2019.189.3.4
Cité par Sources :