A proof of Furstenberg’s conjecture on the intersections of $\times p$- and $\times q$-invariant sets
Annals of mathematics, Tome 189 (2019) no. 3, pp. 707-751

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove the following conjecture of Furstenberg (1969): if $A,B\subset [0,1]$ are closed and invariant under $\times p \mod 1$ and $\times q \mod 1$, respectively, and if $\log p/\log q\notin \Bbb{Q}$, then for all real numbers $u$ and $v$,
\[
\dim_{\rm H}(uA+v)\cap B\le \max\{0,\dim_{\rm H}A+\dim_{\rm H}B-1\}.
\]
We obtain this result as a consequence of our study on the intersections of incommensurable self-similar sets on $\Bbb{R}$. Our methods also allow us to give upper bounds for dimensions of arbitrary slices of planar self-similar sets satisfying SSC and certain natural irreducible conditions.

DOI : 10.4007/annals.2019.189.3.2

Meng Wu 1

1 Department of Mathematical Sciences, University of Oulu, Oulu, Finland
@article{10_4007_annals_2019_189_3_2,
     author = {Meng Wu},
     title = {A proof of {Furstenberg{\textquoteright}s} conjecture on the intersections of $\times p$- and $\times q$-invariant sets},
     journal = {Annals of mathematics},
     pages = {707--751},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2019},
     doi = {10.4007/annals.2019.189.3.2},
     mrnumber = {3961082},
     zbl = {07097489},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.2/}
}
TY  - JOUR
AU  - Meng Wu
TI  - A proof of Furstenberg’s conjecture on the intersections of $\times p$- and $\times q$-invariant sets
JO  - Annals of mathematics
PY  - 2019
SP  - 707
EP  - 751
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.2/
DO  - 10.4007/annals.2019.189.3.2
LA  - en
ID  - 10_4007_annals_2019_189_3_2
ER  - 
%0 Journal Article
%A Meng Wu
%T A proof of Furstenberg’s conjecture on the intersections of $\times p$- and $\times q$-invariant sets
%J Annals of mathematics
%D 2019
%P 707-751
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.2/
%R 10.4007/annals.2019.189.3.2
%G en
%F 10_4007_annals_2019_189_3_2
Meng Wu. A proof of Furstenberg’s conjecture on the intersections of $\times p$- and $\times q$-invariant sets. Annals of mathematics, Tome 189 (2019) no. 3, pp. 707-751. doi: 10.4007/annals.2019.189.3.2

Cité par Sources :