Voir la notice de l'article provenant de la source Annals of Mathematics website
We explicitly construct an extractor for two independent sources on $n$ bits, each with min-entropy at least $\log^C n$ for a large enough constant $C$. Our extractor outputs one bit and has error $n^{-\Omega(1)}$. The best previous extractor, by Bourgain, required each source to have min-entropy $.499n$.
Eshan Chattopadhyay 1 ; David Zuckerman 2
@article{10_4007_annals_2019_189_3_1, author = {Eshan Chattopadhyay and David Zuckerman}, title = {Explicit two-source extractors and resilient functions}, journal = {Annals of mathematics}, pages = {653--705}, publisher = {mathdoc}, volume = {189}, number = {3}, year = {2019}, doi = {10.4007/annals.2019.189.3.1}, mrnumber = {3961081}, zbl = {07097488}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.1/} }
TY - JOUR AU - Eshan Chattopadhyay AU - David Zuckerman TI - Explicit two-source extractors and resilient functions JO - Annals of mathematics PY - 2019 SP - 653 EP - 705 VL - 189 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.1/ DO - 10.4007/annals.2019.189.3.1 LA - en ID - 10_4007_annals_2019_189_3_1 ER -
%0 Journal Article %A Eshan Chattopadhyay %A David Zuckerman %T Explicit two-source extractors and resilient functions %J Annals of mathematics %D 2019 %P 653-705 %V 189 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.3.1/ %R 10.4007/annals.2019.189.3.1 %G en %F 10_4007_annals_2019_189_3_1
Eshan Chattopadhyay; David Zuckerman. Explicit two-source extractors and resilient functions. Annals of mathematics, Tome 189 (2019) no. 3, pp. 653-705. doi: 10.4007/annals.2019.189.3.1
Cité par Sources :