Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture
Annals of mathematics, Tome 189 (2019) no. 1, pp. 277-316

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove the classification of homomorphisms from the algebra of symmetric functions to $\mathbb {R}$ with non-negative values on Macdonald symmetric functions $P_{\lambda }$, which was conjectured by S. V. Kerov in 1992.

DOI : 10.4007/annals.2019.189.1.5

Konstantin Matveev 1

1 Brandeis University, Waltham, MA
@article{10_4007_annals_2019_189_1_5,
     author = {Konstantin Matveev},
     title = {Macdonald-positive specializations of the algebra of symmetric functions: {Proof} of the {Kerov} conjecture},
     journal = {Annals of mathematics},
     pages = {277--316},
     publisher = {mathdoc},
     volume = {189},
     number = {1},
     year = {2019},
     doi = {10.4007/annals.2019.189.1.5},
     mrnumber = {3898175},
     zbl = {07003148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.5/}
}
TY  - JOUR
AU  - Konstantin Matveev
TI  - Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture
JO  - Annals of mathematics
PY  - 2019
SP  - 277
EP  - 316
VL  - 189
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.5/
DO  - 10.4007/annals.2019.189.1.5
LA  - en
ID  - 10_4007_annals_2019_189_1_5
ER  - 
%0 Journal Article
%A Konstantin Matveev
%T Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture
%J Annals of mathematics
%D 2019
%P 277-316
%V 189
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.5/
%R 10.4007/annals.2019.189.1.5
%G en
%F 10_4007_annals_2019_189_1_5
Konstantin Matveev. Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture. Annals of mathematics, Tome 189 (2019) no. 1, pp. 277-316. doi: 10.4007/annals.2019.189.1.5

Cité par Sources :