Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove the classification of homomorphisms from the algebra of symmetric functions to $\mathbb {R}$ with non-negative values on Macdonald symmetric functions $P_{\lambda }$, which was conjectured by S. V. Kerov in 1992.
@article{10_4007_annals_2019_189_1_5, author = {Konstantin Matveev}, title = {Macdonald-positive specializations of the algebra of symmetric functions: {Proof} of the {Kerov} conjecture}, journal = {Annals of mathematics}, pages = {277--316}, publisher = {mathdoc}, volume = {189}, number = {1}, year = {2019}, doi = {10.4007/annals.2019.189.1.5}, mrnumber = {3898175}, zbl = {07003148}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.5/} }
TY - JOUR AU - Konstantin Matveev TI - Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture JO - Annals of mathematics PY - 2019 SP - 277 EP - 316 VL - 189 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.5/ DO - 10.4007/annals.2019.189.1.5 LA - en ID - 10_4007_annals_2019_189_1_5 ER -
%0 Journal Article %A Konstantin Matveev %T Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture %J Annals of mathematics %D 2019 %P 277-316 %V 189 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2019.189.1.5/ %R 10.4007/annals.2019.189.1.5 %G en %F 10_4007_annals_2019_189_1_5
Konstantin Matveev. Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture. Annals of mathematics, Tome 189 (2019) no. 1, pp. 277-316. doi: 10.4007/annals.2019.189.1.5
Cité par Sources :